Cho a, b, c là số nguyên dương. \(\frac{28}{29}\)< \(\frac{1}{a}\)+ \(\frac{1}{b}\)+ \(\frac{1}{c}\)< 1. Tìm giá trị nhỏ nhất của S= a+b+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a+7b}{a+5b}=\frac{29}{28}\)
\(\Rightarrow28a+196b=29a+145b\)
\(\Rightarrow196b=145b+a\)
\(\Rightarrow a=51b\)
\(\Rightarrow2b-a=2b-51b=-49b\)
Ta có:
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a+b+c}{a+b+c}\)
\(\Rightarrow M>1\) (1)
Ta có:
\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{a+b}{a+b+c}\)
\(\frac{c}{c+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)
\(\Rightarrow M< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Rightarrow M< 2\) (2)
Từ (1) và (2) => 1 < M < 2
=> M không phải là một số nguyên dương (đpcm)
\(\frac{a}{b+c}>\frac{a}{a+b+c},\frac{b}{b+c}>\frac{b}{b+c+a},\frac{c}{c+a}>\frac{c}{c+a+b}\)
\(\Rightarrow A>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c},\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{b+a}{b+c+a},\frac{c}{a+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{c+a+b}\)
\(\Rightarrow A< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Vậy \(1< A< 2\Rightarrow A\)không phải là một số nguyên dương
a) Chứng tỏ A không phải là số nguyên
Cho: \(A=1-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^3+\left(\frac{3}{4}\right)^4-.......-\left(\frac{3}{4}\right)^{2009}+\left(\frac{3}{4}\right)^{2010}\)
Đây là đề bài câu a nha các bn
Do bị lỗi nên đây là là câu a nha các bn
Ta có:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(>\frac{a+b+c}{a+b+c}=1\left(1\right)\)
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}\)
\(< \frac{2.\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)
Từ (1) và (2) => \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên dương
\(\frac{a+7b}{a+5b}=\frac{29}{28}\Rightarrow\left(a+7b\right).28=\left(a+5b\right).29\)
\(\Leftrightarrow28a+196b=29a+145b\)
\(\Leftrightarrow29a-28a=196b-145b\)
\(\Leftrightarrow a=51b\)
Do đó a luôn chia hết cho 51 nên a không thể là số nguyên tố.
Vậy không tìm được số a;b thỏa mãn đề bài.
Ta có
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\) hay \(M>1\)
\(M=\left(1-\frac{a}{b+a}\right)+\left(1-\frac{c}{b+c}\right)+\left(1-\frac{a}{a+c}\right)< 3-\left(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\right)\)
\(=3-1=2\) hay \(M>2\)
Vậy \(1< M< 2\). Do đó M k thể là số nguyên dương
À bài nãy dễ thôi bạn. Lên cao bn sẽ gặp 1 dạng biến hóa nâng cao từ dạng này !!!
Do a,b,c là số nguyên dương
=> a/(a+b) >a/(a+b+c)
b/(b+c)>b/(a+b+c)
c/(c+a)>c/(a+b+c)
=> a/(a+b) + b/(b+c) + c/(c+a)>(a+b+c)/(a+b+c)=1
Lại có
a/(a+b)<(a+c)/(a+b+c)
b/(c+b)<(a+b)/(a+b+c)
c/(a+c)<(b+c)/(a+b+c)
=> a/(a+b) + b/(b+c) + c/(c+a)<2(a+b+c)/(a+b+c)=2
=> 1< a/(a+b) + b/(b+c) + c/(c+a) < 2
=> a/(a+b) + b/(b+c) + c/(c+a) không là số nguyên
Cho (a-b)+6ab=36.Tìm GTLN của x=ab