Tính chiều cao của một tòa nhà ba tầng biết rằng tầng một cao 3,7 m. Tầng hai thấp hơn tầng một 0,1 m. Tầng ba thấp hơn tầng hai 0,2 m. Ngoài ra còn mái nhà cao 1,2 m.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Chọn trục toạ độ thẳng đứng, chiều dương hướng xuống gốc toạ độ tại vị trí bạn Giang thả ở tầng 19, gốc thời gian lúc bi A rơi.
Phương trình chuyển động của viên bi A: với
Phương trình chuyển động của viên bi B: với
thả rơi sau 1s so vói gốc thời gian
Khi 2 viên bi gặp nhau:
và cách vị trí thả của giang là
= 112,5m
Giải :
Chọn trục toạ độ thẳng đứng, chiều dương hướng xuống gốc toạ độ tại vị trí bạn Giang thả ở tầng 19, gốc thời gian lúc bi A rơi.
Phương trình chuyển động của viên bi A: với x 01 = 0 m ; v 01 = 0 m / s ⇒ x 1 = 1 2 g t 2
Phương trình chuyển động của viên bi B: với x 02 = 10 m ; v 02 = 0 m / s thả rơi sau 1s so vói gốc thời gian x 2 = 10 + 1 2 g ( t − 1 ) 2
Khi 2 viên bi gặp nhau: x 1 = x 2 ⇔ 1 2 g t 2 = 10 + 1 2 g ( t − 1 ) 2 ⇒ t = 1 , 5 s và cách vị trí thả của giang là x 1 = 1 2 g . t 2 = 1 2 .10.1 , 5 2 = 112 , 5 m
Chiều cao tầng hầm B2 là:
\(2,7.\frac{4}{3} = \frac{{18}}{5} = 3,6\,\,(m)\)
Chiều cao tầng hầm của toà nhà so với mặt đất là:
\(2,7 + 3,6 = 6,3\,\,(m)\)
nhưng rõ ràng là bạn viết tòa nhà thứ nhất có 20 tầng và tòa nhà thứ hai thì gấp 15 thi.
Chọn trục tọa độ thẳng đưgs, chiều dương hướng xuống.
Gốc tọa độ tại vị trí thả viên bi A.
Gốc thời gian là lúc viên bi A rơi.
Ptrình chuyển động:
+ Viên bi A: \(y_1=y_{02}+\dfrac{1}{2}gt^2=\dfrac{1}{2}gt^2\)
+ Viên bi B: \(y_2=y_{02}+\dfrac{1}{2}g\left(t-t_0\right)=10+\dfrac{1}{2}g\left(t-1\right)^2\)
Khi 2 viên bi gặp nhau thì: \(y_1=y_2\)
\(\Leftrightarrow\dfrac{1}{2}gt^2=10+\dfrac{1}{2}g\left(t-1\right)^2\)
\(\Leftrightarrow t=1,5s\)
Vậy.............
chiều cao tầng 2 là: 37-0,1=3,6(m)
chiều cao tầng 3 là: 3,6-0,2=3,4(m)
chiều cao tòa nhà đó là:3,7+3,6+3,4+1,2=11,9(m)