Câu 1:
Tìm các số tự nhiên N sao cho phân số n + 3/n có giá trị là số nguyên.
A. {1;3}
B. {-1;-3}
C. {3;-3}
D. {-1;1;-3;3}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phân số 6 n - 1 có giá trị là số nguyên
thì 6 ⋮ (n - 1)
⇒ (n – 1) ∈ Ư(6) = {±1; ±2; ±3; ±6}
Ta có bảng sau:
n - 1 | -1 | 1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 0 | 2 | 3 | -1 | 4 | -2 | 7 | -5 |
Kết hợp với điều kiện n là số tự nhiên
⇒ n ∈ {0; 2; 3; 4; 7}
Vậy n ∈ {0; 2; 3; 4; 7}.
để\(\frac{2n+1}{3n+2}\)có giá trị nguyên => \(2n+1⋮3n+2=>3\left(2n+1\right)⋮3n+2\)
\(< =>6n+3⋮3n+2\)(1)
Ta lại có : \(3n+2⋮3n+2\)với mọi n \(=>6n+4⋮3n+2\)(2)
Từ (1) và (2) suy ra \(\left(6n+4\right)-\left(6n+3\right)⋮3n+2\)<=> \(1⋮3n+2\)
Vì n là STN,do đó \(3n+2\inƯ\left(1\right)=\left(1\right)\)
Với 3n+2=1=>n=\(-\frac{1}{3}\)(loại)
Vậy k có số tự nhiên n thỏa mãn,các bài còn lại làm tương tự
a)\(\frac{4}{n}\inℤ\left(n\inℕ\right)\Rightarrow n=\left\{1;2\right\}\)
b) \(\frac{\left(n+9\right)}{3}\inℤ\left(n\inℕ\right)\)
Mà: \(\left(n+9\right)⋮3\Rightarrow n⋮3\)nên \(n\in\left\{0;3;6;9\right\}\)
Answer:
Đáp án chọn D, {-1;1;-3;3}
*Giải thích:
Ta có:
\(\dfrac{n+3}{n}=\dfrac{n}{n}+\dfrac{3}{n}=1+\dfrac{3}{n}\)
\(\Rightarrow\) \(\dfrac{n+3}{3}\) là số nguyên thì \(\dfrac{3}{n}\) là số nguyên.
Để \(\dfrac{3}{n}\) là số nguyên thì \(3 ⋮ n\) hay \(n\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)\in\left\{-1;1;-3;3\right\}\)
Vậy để \(\dfrac{n+3}{3}\) là số nguyên thì \(n=\left\{-1;1;-3;3\right\}\)
Đáp án: D.
Cách giải:
Chúc học tốt!