Cho tam giác ABC có góc B < góc C, vẽ AH vuông góc với BC tại H, M là điểm trên đoạn AH:
a) So sánh BH và CH
b) So sánh MB và MC
c) Chứng minh góc MCB > góc MBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc B<góc C
=>AB>AC
Xét ΔABC có AB>AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC
nên HB>HC
b: Xét ΔMBC có HB>HC
mà HB,HC lần lượt là hình chiếu của MB,MC trên BC
nên MB>MC
=>góc MCB>góc MBC
a: Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC
nên HB<HC
b: Xét ΔMBC có
HB,HC lần lượt là hình chiếu của MB,MC trên BC
HB<HC
=>MB<MC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC
b: \(\widehat{BAC}=70^0\)
nên \(\widehat{BAH}=35^0\)
=>\(\widehat{B}=55^0\)
=>BH<AH
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: AD=AE
hay ΔADE cân tại A
a: Xét ΔABC có AC>AB
mà góc đối diện với cạnh AC là góc ABC
và góc đối diện với cạnh AB là góc ACB
nên \(\widehat{ABC}>\widehat{ACB}\)
b: Xét ΔABC có AC>AB
mà hình chiếu của AC trên BC là HC
và hình chiếu của AB trên BC là HB
nên HC>HB
a: Xét ΔABC có góc B<góc C
nên AB>AC
Xét ΔABC có
AB>AC
HB,HC lần lượt là hình chiếu của AB,AC trên BC
=>HB>HC
b: Xét ΔMBC có
HB,HC lần lượt là hình chiếu của MB,MC trên BC
HB>HC
=>MB>MC
c: MB>MC
=>góc MCB>góc MBC