K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2016

ta có AE=AB nên tam giác ABE cân ở A

mà AD là phân giác cuả góc BAE 

suy ra AD là đương phân giác của tam giác ABE

do đó AD đồng thời là đường trung trực của BE

vậy ADvuoong góc với BE

31 tháng 8 2021

Gọi giao điểm của AD và BE là O.

Xét tam giác AEO và tam giác ABO,có:

             AE=AB  (gt)

       Góc EAO=Góc BAO (gt)

        AO là cạnh chung

=> Tam giác AEO=Tam giác ABO (c.g.c)

    =>Góc AOE= Góc ABO (2 góc tương ứng)

Ta có:  Góc AOE + Góc AOB=180o  (2 góc bù nhau)

       Mà Góc AOE=Góc AOB  (cmt)

           => Góc AOE = 90o

    => AD⊥BE tại O

Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

Suy ra: DB=DE

Ta có: AB=AE

nên A nằm trên đường trung trực của BE(1)

Ta có: DB=DE

nên D nằm trên đường trung trực của BE(2)

Từ (1) và (2) suy AD là đường trung trực của BE

hay AD\(\perp\)BE

31 tháng 8 2021

Ta có:

AB = AE

=> Tam giác ABE cân tại A

Gọi I là giao điểm AD và BE

Xét tam giác ABI và tam giác AEI

AB = AE

Góc BAI = góc EAI

AD: cạnh chung

=> Tam giác ABI = tam giác AEI (c-g-c)

=> Góc AIB = góc AIE (góc tương ứng)

Mà góc AIB + góc AIE = 180 (kề bù)

=> AIB = AIE = 90

=> AD vuông góc với BE

Sửa đề: ΔABC cân tại A

a:ΔABC cân tại A

mà AD là đường phân giác

nên AD là đường cao

=>AD vuông góc BC

b: Xét ΔAFI và ΔAEI có

AF=AE
góc FAI=góc EAI

AI chung

=>ΔAFI=ΔAEI

=>góc AFI=góc AEI

=>FI vuông góc AB

c: Xét ΔABC có

BE,AD là đường cao

BE cắt AD tại I

=>I là trực tâm

=>CI vuông góc AB

=>C,I,F thẳng hàng

Bài 2: 

Xét ΔADO vuông tại D và ΔAEO vuông tại E có

AO chung

\(\widehat{DAO}=\widehat{EAO}\)

Do đó: ΔADO=ΔAEO

Suy ra: OD=OE

Bài 3: 

Xét ΔABE và ΔACD có 

AB=AC
\(\widehat{A}\) chung

AE=AD
Do đó: ΔABE=ΔACD

Suy ra: BE=CD

27 tháng 8 2019

gọi H là giao điểm của BE và AD
xét tam giác ABH và tam giác AEH có:
AB=AE (gt);
góc BAH=góc EAH
(vì H thuộc AD; AD là phân giác góc A)
AH là cạnh chung
=> tam giác ABH = AEH (c.g.c)
=> BH=EH
xét tam giác cân ABE (vì AB=AE) có:
BH=EH ( vì AH là đường trung tuyến)
=> AH cũng là đường cao
=>AH vuông BE
=>AD vuông BE

27 tháng 8 2019

https://olm.vn/hoi-dap/detail/79807321415.html

Câu hỏi của Tài Phan - Toán lớp 7 - Học toán với Oline Math

a) Xét ΔBAD vuông tại A và ΔBHD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔBAD=ΔBHD(cạnh huyền-góc nhọn)

Suy ra: BA=BH(Hai cạnh tương ứng)