Cho hình chữa Nhật MNPQ là trung điểm của MN G là trung điểm của PQ ENPG là hình vuông cạnh 7h Tính chu vi hình chữ Nhật MNP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì E là trung điểm của MN mà EN = 7cm nên MN=7×2=14(cm)
Chu vi hình chữ nhật MNPQ là:
(7+14)×2=42(cm)
Đáp số: 42cm.
Chu vi của hình thoi là:
120 : 2 = 60(m)
Tổng hai cạnh của hình thoi là:
60 : 2 = 30(m)
Độ
a. ta có \(\hept{\begin{cases}AB\text{//}MP\text{ và }AB=\frac{1}{2}MP&;CD\text{//}MP\text{ và }CD=\frac{1}{2}MP&\end{cases}}\)
Do đó AB//CD và AB=CD
do đó ABCD là hình bình hành.
b. để ABCD là hình chữ nhật thì cần 1 góc vuông, nên ta cần hai đường chéo của hình thang NMPQ là NP và NQ vuông góc với nhau
Xét ΔMNQ có
A là trung điểm của MN
D là trung điểm của MQ
Do đó: AD là đường trung bình của ΔMNQ
Suy ra: AD//NQ và AD=NQ/2(1)
Xét ΔNPQ có
B là trung điểm của NP
C là trung điểm của QP
Do đó: BC là đường trung bình của ΔNPQ
Suy ra: BC//NQ và BC=NQ/2(2)
Từ (1) và (2) suy ra AD//BC và AD=BC
Xét ΔMNP có
A là trung điểm của MN
B là trung điểm của NP
Do đó: AB là đường trung bình của ΔMNP
Suy ra: AB=MP/2=NQ/2(3)
Từ (1) và (3) suy ra AD=AB
Xét tứ giác ABCD có
AD//BC
AD=BC
Do đó: ABCD là hình bình hành
mà AB=AD
nên ABCD là hình thoi
a: Xét ΔMNP có
Q là trung điểm của MN
K là trung điểm của NP
Do đó: QK là đường trung bình của ΔMNP
Suy ra: QK//MP
hay MQKP là hình thang vuông