K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2019

\(M=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+.....+\frac{1}{37\cdot38}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{37}-\frac{1}{38}\)

\(=\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{37}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{38}\right)\)

\(=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{38}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{38}\right)\)

\(=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{38}\)

\(N=\frac{1}{20\cdot38}+\frac{1}{21\cdot37}+...+\frac{1}{38\cdot20}\)

\(\Rightarrow58N=\frac{1}{20}+\frac{1}{38}+\frac{1}{21}+\frac{1}{37}+...+\frac{1}{37}+\frac{1}{20}\)

\(=2\left(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{38}\right)\)

\(=2A\)

\(\Rightarrow N=\frac{2}{58}M\)

\(\Rightarrow\frac{M}{N}=29\)là số nguyên.

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

8 tháng 3 2019

Ta có :M=\(\frac{2012^{37}+37^{2012}+1}{2012^{38}}\)=\(\frac{1}{2012}\)+\(\frac{37^{2012}}{2018^{38}}\)+\(\frac{1}{2012^{38}}\)

N=\(\frac{2012^{38}+37^{2012}+2}{2012^{39}}\)=\(\frac{1}{2012}\)+\(\frac{37^{2012}}{2012^{39}}\)+\(\frac{2}{2012^{39}}\)

Suy ra: M-N=\(\frac{37^{2012}}{2012^{38}}\left(1-\frac{1}{2012}\right)\)+\(\frac{1}{2012^{38}}\left(1-\frac{2}{2012}\right)\)

\(\Rightarrow\)M-N=\(\frac{37^{2012}}{2012^{38}}.\frac{2011}{2012}+\frac{1}{2012^{38}}.\frac{2010}{2012}\)

\(\Rightarrow\)M-N>0

\(\Rightarrow\)M>N

Vậy M>N

a) \(A=2^{100}-2^{99}-2^{98}-...-2^2-2^1\)( Có 2 câu nên mình tính nhanh luôn nhé )

\(\Leftrightarrow A=2^{100}-\left(2^1+2^2+2^3+...+2^{98}+2^{99}\right)\)

\(A=2^{100}-\left(2^{100}-2^1\right)=2^{100}-2^{100}+2=2\)

b) \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{36.37.38}+\frac{1}{37.38.39}\)

\(=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{38-36}{36.37.38}+\frac{39-37}{37.38.39}\)

\(=\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}\right)+\left(\frac{4}{2.3.4}-\frac{2}{2.3.4}\right)+...+\left(\frac{39}{37.38.39}-\frac{37}{37.38.39}\right)\)

\(=\left(\frac{1}{2}-\frac{2}{3}\right)+\left(\frac{2}{3}-\frac{3}{4}\right)+\left(\frac{3}{4}-\frac{4}{5}\right)+...+\left(\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(=\frac{1}{2}-\frac{2}{3}+\frac{2}{3}-\frac{3}{4}+\frac{3}{4}-\frac{4}{5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)

\(=\frac{1}{2}-\frac{1}{38.39}=\frac{741}{1482}-\frac{1}{1482}=\frac{740}{1482}=\frac{370}{741}\)