A=\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a.rút gọn A
b. chứng minh A\(\ge0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) ĐK: $x\geq 0; y\geq 0; x\neq y$
\(A=\left[\frac{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}{\sqrt{x}-\sqrt{y}}-\frac{(\sqrt{x}-\sqrt{y})(x+\sqrt{xy}+y)}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}\right]:\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
\(=\left(\sqrt{x}+\sqrt{y}-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right).\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
b) \(1-A=\frac{(\sqrt{x}-\sqrt{y})^2}{x-\sqrt{xy}+y}>0\) với mọi $x\neq y; x,y\geq 0$
$\Rightarrow A< 1$
a) Rút gọn được \(\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
c) \(H=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\Rightarrow H^2=\dfrac{xy}{\left(x-\sqrt{xy}+y\right)^2}\)
\(\Rightarrow H^2-H=\dfrac{xy}{\left(x-\sqrt{xy}+y\right)^2}-\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}=\dfrac{xy-\sqrt{xy}\left(x-\sqrt{xy}+y\right)}{\left(x-\sqrt{xy}+y\right)^2}\)
\(=\dfrac{2xy-x\sqrt{xy}-y\sqrt{xy}}{\left(x-\sqrt{xy}+y\right)^2}=\dfrac{-\sqrt{xy}\left(x-2\sqrt{xy}+y\right)}{\left(x-\sqrt{xy}+y\right)^2}=-\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(x-\sqrt{xy}+y\right)^2}\)
Do \(\left\{{}\begin{matrix}\sqrt{xy}\ge0\\\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\\\left(x-\sqrt{xy}+y\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow H^2-H=-\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(x-\sqrt{xy}+y\right)^2}\le0\Rightarrow H^2\le H\)
Mà \(H\ge0\left(cmt\right)\Rightarrow H\le\sqrt{H}\)
a) \(B=\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\left(x,y\ge0;x\ne y\right)\)
\(B=\left[\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{x-y}\right]:\dfrac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
\(B=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)
\(B=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)
\(B=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)
\(B=\dfrac{\sqrt{xy}}{x+\sqrt{xy}+y}\)
b) Xét tử:
\(\sqrt{xy}\ge0\forall x,y\) (xác định) (1)
Xét mẫu:
\(x+\sqrt{xy}+y\)
\(=\left(\sqrt{x}\right)^2+2\cdot\dfrac{1}{2}\sqrt{y}\cdot\sqrt{x}+\left(\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)
\(=\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)
Mà: \(\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2\ge0\forall x,y\) (xác định), còn: \(\dfrac{3}{4}y\ge0\) vì theo đkxđ thì \(y\ge0\) (2)
Từ (1) và (2) ⇒ B luôn không âm với mọi x,y (\(B\ge0\)) (đpcm)
a) Ta có: \(P=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\cdot\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
\(=\left(\dfrac{2}{\sqrt{xy}}+\dfrac{1}{x}+\dfrac{1}{y}\right):\dfrac{x\sqrt{x}+y\sqrt{x}+x\sqrt{y}+y\sqrt{y}}{x\sqrt{xy}+y\sqrt{xy}}\)
\(=\left(\dfrac{x+2\sqrt{xy}+y}{xy}\right):\dfrac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(x+y\right)}\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}\cdot\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
a) Đk:\(x>0;y>0\)
\(P=\left[\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}.\sqrt{y}}.\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{x\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{xy}+y\sqrt{xy}}\)
\(=\left[\dfrac{2}{\sqrt{xy}}+\dfrac{x+y}{xy}\right]:\dfrac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(x+y\right)}\)
\(=\dfrac{2\sqrt{xy}+x+y}{xy}:\dfrac{\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}.\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
b) \(xy=16\Leftrightarrow x=\dfrac{16}{y}\)
\(P=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}=\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}=\dfrac{1}{\sqrt{\dfrac{16}{y}}}+\dfrac{1}{\sqrt{y}}=\dfrac{\sqrt{y}}{4}+\dfrac{1}{\sqrt{y}}\)
Áp dụng AM-GM có:
\(\dfrac{\sqrt{y}}{4}+\dfrac{1}{\sqrt{y}}\ge2\sqrt{\dfrac{\sqrt{y}}{4}.\dfrac{1}{\sqrt{y}}}=1\)
\(\Rightarrow P\ge1\)
Dấu "=" xảy ra khi \(y=4\Rightarrow x=4\)
Vậy x=y=4 thì P đạt GTNN là 1
a:
Sửa đề: \(A=\left(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(A=\left(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}+\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(A=\left(\sqrt{x}+\sqrt{y}-\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
b: căn xy>0
\(x-\sqrt{xy}+y=x-2\cdot\sqrt{x}\cdot\dfrac{1}{2}\sqrt{y}+\dfrac{1}{4}y+\dfrac{3}{4}y\)
\(=\left(\sqrt{x}-\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y>0\)
=>A>0
a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)
b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)
c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)
\(=\sqrt{x}+2-\sqrt{x}-2=0\)
Ta có: \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\left(x-2\sqrt{xy}+y\right)}{x-y}+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=1
a \(A=\dfrac{\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)-x\sqrt{x}+y\sqrt{y}}{x-y}\cdot\dfrac{\left(\sqrt{x}+\sqrt{y}\right)}{x-\sqrt{xy}+y}\)
\(=\dfrac{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\cdot\dfrac{1}{x-\sqrt{xy}+y}\)
\(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
b: căn xy>=0
x-căn xy+y
=x-2*căn x*1/2*căn y+1/4*y+3/4y
=(căn x-1/2*căn y)^2+3/4y>0
=>A>=0