Chứng tỏ rằng với hai số tự nhiên bất kỳ khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(+) Chứng minh chiều thuận
Theo đề ra ta có 2 số thõa mãn là \(\begin{cases}km+x\\lm+x\end{cases}\) ( với k ; l ; m là số nguyên )
Xét hiệu :
\(\left(km+x\right)-\left(lm+x\right)=km-lm=m\left(k-l\right)⋮m\)
(+) Chứng minh chiều đảo :
Ta sẽ c/m bằng phương pháp phản chứng .
Giả sử a - b chia hết cho m ( 1 ) nhưng a và b không có cùng số dư khi chia cho m
\(\Rightarrow\begin{cases}a=mk+x\\b=ml+y\end{cases}\)\(\left(k;m;x;y\in N;x,y< m;x\ne y\right)\)
=> Hiệu \(a-b=\left(mk+x\right)-\left(lk+y\right)\)
\(\Rightarrow a-b=m\left(lk-l\right)+\left(x-y\right)\)
Xét m(k - l ) chia hết cho m
x ; y < m
=> x - y < m
=> x - y không chia hết cho m
\(\Rightarrow m\left(lk-l\right)+\left(x-y\right)⋮̸m\) ( 2 )
(1) và (2) mâu thuẫn
=> Giả sử sai
=> Đpcm
Gọi 2 số đó là a , b ( a , b ≠ 0 ; A , B ∈ N )
Ta có : a ⋮ m => a = m.q ( q ≠ 0 ; q ∈ N )
b ⋮ m => b = m.p ( p ≠ 0 ; p ∈ N )
=> a - b = m.q - m.p = m( q - p )
Vì m ⋮ m => m ( q - p ) ⋮ m => a - b ⋮ m
=> đpcm
Gọi a , b là 2 số chia cho m có cùng số dư
=> a = mk + r ( m là số chia, k là thương, r là số dư)
b = mt + r ( m là số chia, t là thương, r là số dư)
Khi đó a - b = (mk + r ) - (mt + r) = mk + r - mt - r
= mk - mt
= m( k - t)
Vì m chia hết cho m nên m(k - t ) chia hết cho m
hay a - b chia hết cho m
Vậy nếu a và b chia cho m có cùng số dư thì a - b chia hết cho m
Chứng tỏ rằng với hai số tự nhiên bất kì khi chia cho m có cùng số dư thí hiệu của chúng chia hiết cho 5 .
cau trả lời không cần đúng chỉ cần nhanh nhất
Ha Ha !
Sai đề hoặc thiếu bạn nhé
Mình sẽ cho 1 ví dụ phản chứng
3 và 5 có cùng số dư khi chia cho 2 ( m )
Hiệu 5 - 3 = 2 không chia hết cho 5
Bài đó bn k mk mk sẽ giúp
gọi hai số đó là a và b
a = m.n+r
b = m.k+r
a-b = m.n+r-(m.k+r)
a-b = m.n+r-m.k-r
a-b = m.n-m.k = m.(n-k) chia hết cho m