cho tam giác DEF vuông tại D với đường trung tuyến DI
a) tam giác DEI= tam giác DFI
b) chứng minh ID là đường trung trực của EF
C) kẻ đường trung tuyến EN. CMR: IN // ED
giúp mik với
chiều nộp ròi
trước 1h30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Xét tam giác DEI và tam giác DFI, có:
^E = ^F ( DEF cân )
DE = DF ( DEF cân )
EI = FI ( gt )
Vậy tam giác DEI = tam giác DFI ( c.g.c )
b.Ta có: DI là đường trung tuyến trong tam giác cân DEF
=>DI vuông góc EF
c.Ta có: DN = FN ( gt )
EI = FI ( gt )
=> IN là đường trung bình của tam giác DEF
=> IN//ED
a: Xét ΔDEI và ΔDFI có
DE=DF
EI=FI
DI chung
Do đó: ΔDEI=ΔDFI
b: Ta có: ΔDEF cân tại D
mà DI là đường trung tuyến
nên DI là đường cao
bn tham khỏa đường link này nha /hoi-dap/detail/220486054053.html
\(\text{a)Xét }\Delta DEI\text{ và }\Delta DFI\text{ có:}\)
\(DE=DF\left(\Delta DÈ\text{ cân tại D}\right)\)
\(\widehat{DEF}=\widehat{DFE}\left(\Delta DEF\text{ cân tại D}\right)\)
\(DI\text{ chung}\)
\(\Rightarrow\Delta DEI=\Delta DFI\left(c-g-c\right)\)
\(\text{b)Vì }\Delta DEI=\Delta DFI\left(cmt\right)\)
\(\Rightarrow\widehat{DIE}=\widehat{DIF}\left(\text{hai góc tương ứng}\right)\)
\(\text{Mà chúng kề bù}\)
\(\Rightarrow\widehat{DIE}=\widehat{DIF}=\dfrac{180^0}{2}=90^0\)
\(\Rightarrow DI\perp EF\)
\(\text{c)K bt sorry}\)
Mik vẽ trên máy nó k chính xác lắm có vãi chỗ bị lệch bn thông cảm
a)tam giác dei=tg dfi (c.c.c)
b)nên góc dif bằng góc die bằng 90 độ nên di vuông góc với ef
c)EN là đường trung tuyến. nên nd=nf nên in là đường trung tuyến của tam giác vuông dif
trên tia đối tia ini vẽ điểm m sao cho nm=ni
chứng minh được tam giác dni=tam giác fnm (c.g.c)
nên di=ef (2ctu);và góc din bằng góc nmf(mà 2 góc này ở vị trí so le trong )nên di song song với mf nên goc dif bằng góc mfi bằng 90 độ
chứng minh đc tam giác dif =tam giác mfi (c.g.c) nên cạnh df =im nên in=1/2df nên in=nf nên tam giác inf cân tai n nên góc nif bằng nfi mà nfi = góc dei (tam giác def cân tại d) nên góc nif bằng góc dei
mà 2 góc này ở vị trí đồng vị nên in song song với de
bạn ơi ,bạn tự vẽ hình đi nha
a: Xét ΔDEI và ΔDFI có
DE=DF
EI=FI
DI chung
=>ΔDEI=ΔDFI
b: ΔDEF cân tại D
mà DI là trung tuyến
nên DI vuông góc EF
c: Xét ΔDFE có FI/FE=FN/FD
nên IN//ED
chắc câu a và b bạn đả giải dc nên mình chỉ trinh bày câu c
bạn tự vẽ hình nha
c)en là đường trung tuyến của tam giác def nên nd=nf suy ra in là đường trung tuyến của tam giác dif
trên tia đối của tia ni , vẽ diểm t sao cho nt=ni
cmđ:tam giac dni=fnt(c.g.c)
suy ra di =tf(2ctu)và góc din=ftn mà 2 góc này ở vị trí so le trong nên di song song với tf suy ra góc die=tfi =90 độ
cmđ tam giác dif =tfi (c.g.c) suy ra df =ti (2 cạnh tương ứng) suy ra df/2=ti/2 nên dn=nf=ni=nt
ni=nf suy ra tam giác inf cân tại n nên góc nif =nfi mà dfi =dei (tam giác def cân tại d) nên góc nif=dei
và :2 góc này ở vị trí đồng vị
nên in song song với de
a: Xét ΔDEI và ΔDFI có
DE=DF
DI chung
IE=IF
Do đó: ΔDEI=ΔDFI
b: Ta có: ΔDEI=ΔDFI
nên \(\widehat{DIE}=\widehat{DIF}\)
mà \(\widehat{DIE}+\widehat{DIF}=180^0\)
nên \(\widehat{DIE}=\widehat{DIF}=\dfrac{180^0}{2}=90^0\)
a) ∆DEI = ∆DFI có:
DI là cạnh chung
DE = DF ( ∆DEF cân)
IE = IF (DI là trung tuyến)
=> ∆DEI = ∆DFI (c.c.c)
b) Vì ∆DEI = ∆DFI =>
mà = 1800 ( kề bù)
nên = 900
a: Sửa đề: ΔDEF cân tại D
Xét ΔDEI và ΔDFI có
DE=DF
EI=FI
DI chung
=>ΔDEI=ΔDFI
b: ΔDEF cân tại D
mà DI là trung tuyến
nên DI là trung trực của EF
c: Xét ΔDEF có I,N lần lượt là trung điểm của FE,FD
=>IN là đường trung bình
=>IN//DE