tìm n là STN:
3n + 4 chia hết cho n - 1
2n + 1 chia hết cho 16 - 3n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) n2 + 2n + 6 chia hết cho n + 4
n2 + 4n - 2n + 6 chia hết cho n + 4
n.(n + 4) - 2n + 6 chia hết cho n + 4
2n + 6 chia hết cho n + 4
2n + 8 - 2 chia hết cho n + 4
2.(n + 4) - 2 chia hết cho n + 4
=> - 2 chia hết cho n + 4
=> n + 4 thuộc Ư(-2) = {1 ; -1 ; 2 ; -2}
Xét 4 trường hợp ,ta có :
n + 4 = 1 => n = -3
n + 4 = -1 => n = -5
n + 4 = 2 => n = -2
n + 4 = -2 => n = -6
Ta có: 16-3n chia hết cho n+4
=>-(16-3n) chia hết cho n+4
=>3n-16 chia hết cho n+4
=>(3n+12)-12-16 chia hết cho n+4
=>3(n+4)-28 chia hết cho n+4
Mà 3(n+4) chia hết cho n+4
=>28 chia hết cho n+4
=>n+4 thuộc Ư(28)={1;2;4;7;14;28}
=>n thuộc {-3;-2;0;3;10;24}
Mà n là STN
=>n thuộc {0;3;10;24}
(16-3n) chia het (n+4)
<=> (3n-16) chia het (n+4)
<=> 3(n+4)-12-16 chia het (n+4)..
<=> 3(n+4)-28 chia het (n+4)
Vì (n+4) chia het (n+4).
=> 3(n+4) chia het (n+4)
=>28 chia het (n+4)
nen n+4 là uoc cua 28
=>n+4{1;2;4;7;14;-1;-2;-4;-7;-14}
ta co bang
n+4 ..................... ban tu lam tiep nha
a) n + 3 chia hết cho n
Vì n chia hết cho n nên để n + 3 chia hết cho n thì 3 chia hết cho n
Từ đó suy ra : n \(\in\)Ư ( 3 ) = { 1 ; 3 }
b) 35 - 12n chia hết cho n ( n < 3 )
Vì 12n chia hết cho n nên để 35 - 12n chia hết cho n thì 35 chia hết cho n
từ đó suy ra : n \(\in\)Ư ( 35 ) = { 1 ; 5 ; 7 ; 35 }
Mà n < 3 nên n = 1
Vậy n = 1
c) 16 - 3n chia hết cho n + 4 ( n < 6 )
theo bài ra ta có :
16 - 3n chia hết cho n + 4
28 . ( 3n + 12 ) chia hết cho n + 4
28 - 3 . ( n + 4 ) chia hết cho n + 4
vì 3 . ( n + 4 ) chia hết cho n + 4 nên để 28 - 3 . ( n + 4 ) chia hết cho n + 4 thì 28 chia hết cho n + 4
Từ đó suy ra : n + 4 \(\in\)Ư ( 28 ) = { 1 ; 2 ; 4 ; 7 ; 14 ; 28 }
mà n < 6 nên n = { 1 ; 2 ; 4 }
vậy n = { 1 ; 2 ; 4 }
d) 5n + 2 chia hết cho 9 - 2n ( n < 5 )
ta có : 9 - 2n chia hết cho 9 - 2n nên 5 . ( 9 - 2n ) chia hết cho 9 - 2n ( 1 )
Vì 5n + 2 chia hết cho 9 - 2n nên 2 . ( 5n + 2 ) chia hết cho 9 - 2n ( 2 )
Từ ( 1 ) và ( 2 ) ta có :
5 . ( 9 - 2n ) + 2 . ( 5n + 2 ) chia hết cho 9 - 2n
=> 45 - 10n + 10n + 4 chia hết cho 9 - 2n
45 + 4 chia hết cho 9 - 2n
49 chia hết cho 9 - 2n
để 5n + 2 chia hết cho 9 - 2n thì 49 chia hết cho 9 - 2n
Vậy 9 - 2n \(\in\)Ư ( 49 ) = { 1 ; 7 ; 49 }
Vì 9 - 2n \(\le\)9 nên 9 - 2n \(\in\){ 1 ; 7 }
\(\Rightarrow\orbr{\begin{cases}9-2n=7\\9-2n=1\end{cases}\Rightarrow\orbr{\begin{cases}n=1\\n=4\end{cases}}}\)
a) n + 3 chia hết cho n ( n thuộc N )
Ta có : n chia hết cho n
n + 3 chia hết cho n
=> 3 chia hết cho n
=> n thuộc Ư ( 3 )
=> n thuộc { 1 ; 3 }
a)n+3\(⋮\)n b)35-12n\(⋮\)n
n\(⋮\)n 12n\(⋮\)n
n+3-n\(⋮\)n 35-12n-12n\(⋮\)n
3\(⋮\)n 35\(⋮\)n
\(\Rightarrow\)n={1;3} vì n<3 nên :
\(\Rightarrow\)n={1}
Làm tượng tự với các câu sau
Có n + 3 chia hết cho n
=> n chia hết cho n
=> 3 chia hết cho n
=> n thuộc Ư(3)
n = { 1 ; 3}
Cách 1 :
Ta có : 3n + 4 chia hết cho n - 1
=> 3n - 3 + 7 chia hết cho n - 1
=> 3(n - 1) + 7 chia hết cho n - 1
=> 7 chia hết cho n - 1
=> n - 1 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng :
Cách 2 :
Ta có : \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{7}{n-1}=3+\frac{7}{n-1}\)
Để 3n + 4 chia hết cho n - 1 thì 7 chia hết cho n - 1
=> 7 chia hết cho n - 1
=> n - 1 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng :