tìm x ,y để x 765y chia hết cho 3 và 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)
Để \(56x3y⋮2\)thì: \(y=0;2;4;6;8\)
+) Nếu \(y=0\)thì: \(5+6+x+3+0=14+x⋮9\Leftrightarrow x=4\)
+) Nếu \(y=2\)thì: \(5+6+x+3+2=16+x⋮9\Leftrightarrow x=2\)
+) Nếu \(y=4\)thì: \(5+6+x+3+4=18+x⋮9\Leftrightarrow x=0;x=9\)
+) Nếu \(y=6\)thì: \(5+6+x+3+6=20+x⋮9\Leftrightarrow x=7\)
+) Nếu \(y=8\)thì: \(5+6+x+3+8=22+x⋮9\Leftrightarrow x=5\)
\(2.\)
Ta có: \(45=9.5\)
Để: \(71x1y⋮5\)thì: \(y\in\left\{0;5\right\}\)
Ta được: \(71x10;71x15\)
+) Nếu \(y=0\)thì \(71x1y⋮9\Leftrightarrow x\in\left\{0;9\right\}\)
+) Nếu \(y=5\)thì \(71x1y⋮9\Leftrightarrow x=4\)
Vậy với \(x\in\left\{0;9\right\};y=0\)và \(x=4;y=5\)thì \(71x1y⋮45\)
x765y chia hết cho 3 và 5
y = 0 => x = 3;6;9
y = 5 => x = 1;4;7
Tìm x và y để số 1996xy chia hết cho 2,5 và 9
giải
A chia hết cho 2 nên y=0 hoặc y=5
mà A chia hết cho 2 nên y=0
ta có: A=1996x0
A chia hết cho 9 nên ta có :
1+9+9+6+x+0=x+25
Vậy x=2 , y=0, A = 199620
Câu 1 tương tự câu 2 nhá
1.
để 16xy chia hết cho 2 thì y phải là số chẵn :0;2;4;6;8
để 16xy chia hết ch5 thì y phải là 0 hoặc 5
=> y = 0
ta có số : 16x0
Để 16x0 chia hết cho 9 thì 1+6+0+x phải chia hết 9
hay 7 +x phải chia hết 9
Mà x là chữ số
=> x = 2
1/
\(421x+y=420x+\left(x+y\right)⋮5\)
Ta có \(420x⋮5\Rightarrow x+y⋮5\Rightarrow\left(x+y\right)=\left\{0;5;10;15\right\}\) (1)
\(421x+y⋮3\)
Ta có \(421x⋮3\Rightarrow y⋮3\Rightarrow y=\left\{0;3;6;9\right\}\) (2)
Kết hợp (1) và (2)
+ Với y=0=>x=0
+ Với y=3\(\Rightarrow x=\left\{2;7\right\}\)
+ Với y=6\(\Rightarrow x=\left\{4;9\right\}\)
+ Với y=9\(\Rightarrow x=\left\{1;6\right\}\)
2/
\(\overline{56x3y}⋮9\Rightarrow5+6+x+3+y=9+\left(x+y+5\right)⋮9\)
\(\Rightarrow\left(x+y+5\right)⋮9\Rightarrow\left(x+y\right)=\left\{4;13\right\}\)
Ta có bảng các trường hợp
+ Với x+y=4
x | 0 | 1 | 2 | 3 |
y | 4 | 3 | 2 | 1 |
+ Với x+y=13
x | 4 | 5 | 6 | 7 | 8 | 9 |
y | 9 | 8 | 7 | 6 | 5 | 4 |
Bài 1: y=5; x=5
Bài 2: \(\left(y,x\right)\in\left\{\left(3;4\right);\left(5;2\right);\left(7;0\right);\left(9;7\right)\right\}\)
Bài 3:
a: *=5
b: *=0; *=9
c: *=9
mong các bn giúp mk ngày mai mk nộp rồi
1) 134xy chia hết cho 5
=>y=0 hoặc y=5
+)Nếu y=0
=>134xy=134x0
Để 134x0 chia hết cho 9 thì 1+ 3 + 4 + x + 0 = 8 + x chia hết cho 9
=>x=1
+)Nếu y=5
=>134xy=134x5
Để 134x5 chia hết cho 9 thì 1 + 3 + 4 + x + 5 = 13 chia hết cho 9
=>x = 5
Vậy y = 0 thì x = 1 hoặc y = 5 thì x = 5
2) 1x8y2 chia hết cho 4 và 9
1x8y2 chia hết cho 4 <=>y2 chia hết cho 4 <=>y={1;5;9}
y=1=>1x812 chia hết cho 9<=>(1+x+8+1+2) chia hết cho 9
<=>12+x chia hết cho 9 <=>x=6
y=5=>1x852 chia hết cho 9<=>(1+x+8+5+2) chia hết cho 9
<=>16+x chia hết cho 9 <=>x=2
y=9=>1x892 chia hết cho 9<=>(1+x+8+9+2) chia hết cho 9
<=>20+x chia hết cho 9 <=>x=7
a. C chia hết cho 2 và 5 nên y = 0
C chia hết cho 9 nên (2+3+x+0) chia hết cho 9 =>x = 4
Thử lại C= 2340/3 = 780=> C=2340
b. C = 23xy = 2300 +10x +y = 2256 +44 +10x+y (10\(\le\)10x+y \(\le\)99)
ta có 2256/47=48 vậy C chia hết 47 khi (10x+ y +44) là bội số của 47 và x,y thuộc N nhỏ hơn 10
TH1: 10x+y+44=47 => loại
TH2: 10x + y +44 = 94 <=> 10x + y = 50
Với x,y E N thì x=5 y = 0 là duy nhất => C = 2350
TH3: 10x + y +44 = 47x3 <=> 10x+y = 97 => cặp nghiệm duy nhất x=9, y =7 => C =2397
TH4: 10x +y+44=47.m (m>=4 loại vì 10x+9 >99 )
Vậy có 2 giá trị C = 2350 và 2397 chia hết 47
x765y chia hết cho 5
=> y = 0 hoặc y = 5
+ Xét y = 0 ta có x7650 chia hết cho 3
x + 7 + 6 + 5 + 0 chia hết cho 3
x + 18 chia hết cho 3
=> x = { 3 ; 6 ; 9 }
+ Xét Xét y = 0 ta có x7655 chia hết cho 3
x + 7 + 6 + 5 + 5 chia hết cho 3
x + 23 chia hết cho 3
=> x = { 1 ; 4 ; 7 }
Vậy y = 0 thì x = { 3 ; 6 ; 9 }
hoặc y = 5 thì x = { 1 ; 4 ; 7 }