K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔABC có AD là phân giác

nên DB/CD=AB/AC=3/4(1)

b: Xét ΔCAB có ED//AB

nên ED/EC=AB/AC(2)

từ (1) và (2) suy ra BD/CD=ED/EC

hay \(BD\cdot EC=ED\cdot CD\)

a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AD là phân giác

=>BD/CD=AB/AC=3/4

=>4DB=3CD

mà DB+DC=15

nên DB=45/7cm; DC=60/7cm

b: Xet ΔABC vuông tại A và ΔEDC vuông tại E có

góc C chung

=>ΔABC đồng dạng với ΔEDC

20 tháng 3 2022

e tham khảo câu a

undefined

a: BD/CD=3/4

=>BD/3=CD/4=15/7

=>BD=45/7cm; CD=60/7cm

b: Xét ΔABC vuông tại A và ΔEDC vuông tại E có

góc C chung

=>ΔABC đồng dạng vớiΔEDC

c: AB/ED=CB/CD=7/4

=>9/ED=7/4

=>ED=9*4/7=36/7cm

a:

Ta có: DE\(\perp\)AC

AB\(\perp\)AC

Do đó: DE//AB

Xét ΔCAB có ED//AB

nên \(\dfrac{CE}{EA}=\dfrac{CD}{DB}\)

=>\(\dfrac{BD}{DC}=\dfrac{AE}{EC}\)

b: Xét ΔHBA vuông tại H và ΔEDC vuông tại E có

\(\widehat{EDC}=\widehat{HBA}\)(hai góc đồng vị, DE//AB)

Do đó: ΔHBA~ΔEDC

20 tháng 5 2022

loading...  nhớ đánh giá tốt giúp mk ạ

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{BD+CD}{9+12}=\dfrac{BC}{21}=\dfrac{15}{21}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{9}=\dfrac{5}{7}\\\dfrac{CD}{12}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{45}{7}cm\\CD=\dfrac{60}{7}cm\end{matrix}\right.\)

Vậy: \(BD=\dfrac{45}{7}cm;CD=\dfrac{60}{7}cm\)

22 tháng 6 2021

undefined