Chung tỏ rằng
a.109+2 chia hết cho 3
b.1010-1 chia hết cho 9
c.6100-1 chia hết cho 5
d.2120-1110 chia hết cho 2 và 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 6100 - 1 = (6 . 6 . 6 ..... 6) - 1 = [(...6) . (...6) . (...6) ..... (...6)] - 1 = (...6) - 1 = ...5 \(⋮\) 5
b, 2120 - 1110 = (21 . 21 . 21 . 21 . 21..... 21) - (11 . 11 . 11 . 11 ..... 11) = [(...1) . (...1) . (...1) . (...1).....(...1)] - [(...1) . (...1) . (...1) . (...1).....(...1)] = (...1) - (...1) = ....0 \(⋮\) 2; \(⋮\) 5
Bài 2:
a) Ta có: \(\overline{1a3b}\) số này chia hết cho 2 và 5 nên: \(b=0\)
Mà số này lại chia hết cho 3 nên:
\(1+a+3+b=4+a+0=4+a\) ⋮ 3
TH1: \(4+a=6\Rightarrow a=2\)
TH2: \(4+a=9\Rightarrow a=5\)
TH3: \(4+a=12\Rightarrow a=8\)
Vậy: \(\left(a;b\right)=\left(2;0\right);\left(5;0\right);\left(8;0\right)\)
b) Ta có: \(\overline{2a31b}\) chia hết cho 45 nên số đó phải chia hết cho 5 và 9
Mà \(\overline{2a31b}\) chia hết cho 5 nên: \(b\in\left\{0;5\right\}\)
Lại chia hết cho 9 nên: \(2+a+3+1+b=6+a+b\) ⋮ 9
Với b = 0:
\(6+a+0=9\Rightarrow a=3\)
Với b = 5:
\(6+a+5=18\Rightarrow a=7\)
Vậy: \(\left(a;b\right)=\left(3;0\right);\left(7;5\right)\)
Bài 3:
a) \(13\cdot15\cdot17\cdot19+23\cdot26\)
\(=13\cdot\left(15\cdot17\cdot19+23\cdot2\right)\)
Nên tổng chia hết cho 13 tổng là hợp số không phải SNT
b) \(17^{100}-34\)
\(=17\cdot\left(17^{99}-2\right)\)
Nên hiệu chia hết cho 17 hiệu là hợp số không phải SNT
Lời giải:
a.
$2a+3b\vdots 13$
$\Leftrightarrow 2a+13a+3b\vdots 13$
$\Leftrightarrow 15a+3b\vdots 13$
$\Leftrightarrow 3(5a+b)\vdots 13$
$\Leftrightarrow 5a+b\vdots 13$
b.
$4a+3b\vdots 11$
$\Leftrightarrow 4a-11a+3b\vdots 11$
$\Leftrightarrow -7a+3b\vdots 11$
$\Leftrightarrow -(7a-3b)\vdots 11$
$\Leftrightarrow 7a-3b\vdots 11$ (đpcm)
a) Ta có: \(10^{10}=10...0\) nên \(10^{10}-1=10...0-1=99...9\)
Nên: \(10^{10}-1⋮9\)
b) Ta có: \(10^{10}=10...0\) nên: \(10^{10}+2=10...0+2=10...2\)
Mà: \(1+0+...+2=3\)
Nên: \(10^{10}+2⋮3\)
c) Gọi số chẵn đó \(a\) số chẵn tiếp theo là:\(a+2\)
Mà tổng của 2 số chẵn đó là:
\(a+a+2=2a+2=2\left(a+1\right)\) không chia hết cho 4 nên
Tổng của 2 số chẵn liên tiêp ko chia hết cho 4
d) Gọi hai số tự nhiên đó là: \(a,a+1\)
Tích của 2 số tự nhiên đó là:
\(a\left(a+1\right)=a^2+a\)
Nếu a là số lẻ thì \(a^2\) lẻ nên \(a^2+a\) là chẳn
Nếu a là số chẵn thì \(a^2\) chẵn nên \(a^2+a\) là chẵn
Vậy tích của hai số liên tiếp là chẵn
e) Gọi hai số đó là: \(2a,2a+2\)
Tích của hai số đó là:
\(2a\cdot\left(2a+2\right)=4a^2+4a=4a\left(a+1\right)\)
4a(a+1) chia hết cho 8 nên
Tích của hai số tự nhiên liên tiếp chia hết cho 8
a) \(\overline{50\text{*}}\) chia hết cho 2 thì chữ số tận cùng phải là 0; 2; 4; 6; 8
\(\Rightarrow\text{*}\in\left\{0;2;4;6;8\right\}\)
b) \(\overline{12\text{*}}\) chia hết cho 5 thì chữ số tận cùng phải là 0; 5
\(\Rightarrow\text{*}\in\left\{0;5\right\}\)
c) \(\overline{345\text{*}}\) chia hết cho 2 thì chữ số tận cùng phải là 0; 2; 4; 6; 8
Mà số này lại chia hết cho 5 nên chữ số tận cùng là 0
\(\Rightarrow\text{*}=0\)
d) \(\overline{35\text{*}7}\) để số này chia hết cho 3 thì: \(3+5+\text{*}+7=15+\text{*}\) ⋮ 3
TH1: \(15+\text{*}=15\Rightarrow\text{*}=0\)
TH2: \(15+\text{*}=18\Rightarrow\text{*}=3\)
TH3: \(15+\text{*}=21\Rightarrow\text{*}=6\)
TH4: \(15+\text{*}=24\Rightarrow\text{*}=9\)
\(\Rightarrow\text{*}\in\left\{0;3;6;9\right\}\)
a.Xet 10^9+2 co 10...0(9 chu so 0)+2 chia het cho 3
=10...02(8 chu so 0) chia het cho 3
Xet 10...02 co 1+0+...+0+2=3 chia het cho 3
Vay 10^9+2 chia het cho 3
b.Xet 10^10-1 co 10...0(co 10 chu so 0)-1 chia het cho 9
=99...9( co 9 chu so 9) chia het cho 9
Xet 99...9 co 9+9+...+9=9.9=81 chia het cho 9
Vay 10^10-1 chia het cho 9