cho x+y =2. chung minh rang x^2015+y^2015 ba hon hoac bang x^2016+y^2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ:
\(\hept{\begin{cases}\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|^{2015}\ge0\\\left|y+2015\right|\ge0\Rightarrow\left|y+2015\right|^{2016}\ge0\end{cases}}.\)
Vậy\(\left|x+2016\right|^{2015}+\left|y+2016\right|^{2015}\ge0\)
Cái này là BĐT Bunhiacopxki đó bạn
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+b^2y^2+b^2x^2+a^2y^2\ge a^2x^2+b^2y^2+2axby\)
\(\Leftrightarrow b^2x^2+a^2y^2\ge2axby\)
\(\Leftrightarrow\left(bx-ay\right)^2\ge0\) ( luôn đúng )
\(\Rightarrowđpcm\)
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2\ge a^2x^2+b^2y^2+2axby\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-b^2y^2-2axby\ge0\)
\(\Leftrightarrow a^2y^2+b^2y^2-2axby\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) ( bất đẳng thức luôn đúng )
Vậy ................
Vì A= /x-3/^2014 > hoặc = 0
B=/6+2y/^2015 > hoặc = 0 =>A+B> hoặc =0
mà A+B=0 =>A=0 và B=0
Giải sẽ ra x và y
=>x,y=3,3