K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMBA và ΔMCE có

MB=MC

góc BMA=góc CME

MA=ME

=>ΔMBA=ΔMCE

b: Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

=>ABEC là hình bình hành

=>BE//AC

28 tháng 8 2021

mik cần gấp lm ơn giúp mik

 

28 tháng 8 2021

undefined

22 tháng 12 2021

Hình tự vẽ nha ! 

a/ Xét ΔABM và ΔECM có:

MB=MC (Mlà trung điểm của BC)

góc AMB = góc EMC ( 2 góc đối đỉnh)

MA=ME(giả thiết)

Do đó ΔABM=ΔECM(c.g.c)

b/ vì ΔABM=ΔECM nên góc BAM= góc MEC (2 góc tương ứng)

mà góc BAM và góc MEC là 2 góc ở vị trí so le trong ( khi đoạn thẳng AE cắt AB và CE ở A và E) nên theo dấu hiệu nhận biết 2 đường thẳng song song => AB // CE

22 tháng 12 2021

thank you !!!!!!!!!!!!!!!

a: Xét ΔMBA và ΔMCE có

MB=MC

góc BMA=góc CME

MA=ME

=>ΔMBA=ΔMCE

b: AC>AB=CE

c: góc BAM=góc ECA>góc MAC

d: Xét tứ giác ABEC có

AB//EC

AB=EC

=>ABEC là hbh

=>BE//AC và BE=AC

19 tháng 12 2021

Xét ABM và EMC có : AM = ME BM = CM Góc AMB = góc CME ( đối đỉnh ) => tam giac ABM = Tam giác EMC Ta có : Tam giác AMB = tam giác EMC nên góc BAM = góc EMC Mặt khác : 2 góc BAM và AEC nắm vị trí so le trong => AB // CE c Xét tam giác AIB và tam gics CIK có : AI = IC BI = Ik Góc AIB = góc CIK ( đối đỉnh ) => tam giác AIB = tam giác CIK

19 tháng 4 2018

hình bạn tự vẽ nhé

a) xét tg ABM và tg ECM có : +AM=ME (GT)         +BM=MC (AM là trung tuyến) (gt)      + góc AMB=góc EMC (đối đỉnh)

=> tg ABM=tg ECM (C.G.C)

b) xét tg ABC  có : góc B = 90 độ (gt)  => AC là cạnh lớn nhất  => AC>AB. Mà AB=CE (2 cạnh tương ứng tg ABM và tg CEM)

=> AC>AE

c) trong tg ACE có : góc CEA đối diện với cạnh AC. góc CAM đối diện với cạnh CE

mà AC>CE => góc CEA>góc CAM mà góc CEA=góc MAB ( 2 góc tương ứng tg ABM và tg CEM) => góc MAB>góc MAC

20 tháng 7 2023

a) Xét tam giác ABM và tam giác ECM

Có:

AM = EM (gt)
BM = MC (gt)

AE cạnh chung

=> Tam giác ABM = tam gicas ECM (c.c.c)

b) Ta có: Tam giác ABM = tam giác ECM

=> AB = Ce (2 cạnh t/ư)

Tiếp theo bạn kẻ thêm rồi xét 2 tam giác ACM và tam giác BME (tương tự như câu A th) nhé (cả hình giống hình thoi nhé)

Từ đó có tam giác ACM = tam giác BME

=> Góc AMC = góc BME (2 góc đối đỉnh)

=> AC//BE (đpcm)

:))

 

a: Xét ΔABM và ΔECM có

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔABM=ΔECM

b: ΔABM=ΔECM

=>AB=CE

Xét tứ giác ABEC có

M là trung điểm chung của AE và bC

=>ABEC là hình bình hành

=>AC//BE

a) Xét ΔMAB và ΔMKC có 

MA=MK(gt)

\(\widehat{AMB}=\widehat{KMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔMAB=ΔMKC(c-g-c)

AH
Akai Haruma
Giáo viên
29 tháng 1 2022

Lời giải:
a. Xét tam giác $ABM$ và $ECM$ có:

$BM=CM$ (do $M$ là trung điểm $BC$)

$AM=EM$ (gt)

$\widehat{AMB}+\widehat{EMC}$ (đối đỉnh) 

$\Rightarrow \triangle ABM=\triangle ECM$ (c.g.c)

b. 

Từ tam giác bằng nhau phần a suy ra $\widehat{ABM}=\widehat{ECM}$

Mà hai góc này so le trong nên $AB\parallel CE$ 

c.

$AB\perp AC; AB\parallel CE$

$\Rightarrow AC\perp CE$ (đpcm)

a: Xét ΔABM và ΔECM có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó: ΔAMB=ΔEMC

b: Xét tứ giác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABEC là hình chữ nhật

Suy ra: AB//EC

c: Ta có: ABEC là hình chữ nhật

nên EC\(\perp\)AC