Cho abc=1
CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
Cho abc=1CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\) - Hoc24
Bài này đã có ở đây:
Cho abc=1CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\) - Hoc24
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow VT\ge3\sqrt[3]{\left[\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\right]^4}\)
\(\Rightarrow VT\ge3\left(\sqrt[3]{1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}}\right)^4\) (1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\\\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3\sqrt[3]{\dfrac{1}{a^2b^2c^2}}\end{matrix}\right.\)
\(\Rightarrow1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}\ge1+3\sqrt[3]{\dfrac{1}{abc}}+3\sqrt[3]{\dfrac{1}{a^2b^2c^2}}+\dfrac{1}{abc}\)
\(\Rightarrow1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}\ge\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^3\)
\(\Rightarrow3\left(\sqrt[3]{1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{abc}}\right)^4\ge3\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^4\) (2)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt[3]{abc}\le\dfrac{abc+1+1}{3}=\dfrac{abc+2}{3}\)
\(\Rightarrow1+\dfrac{1}{\sqrt[3]{abc}}\ge1+\dfrac{3}{abc+2}\)
\(\Rightarrow3\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^4\ge3\left(1+\dfrac{3}{abc+2}\right)^4\) (3)
Từ (1) và (2) và (3)
\(\Rightarrow VT\ge3\left(1+\dfrac{3}{abc+2}\right)^4\)
\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge3\left(1+\dfrac{3}{abc+2}\right)^4\) ( đpcm )
\(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b+1}{12}+\dfrac{c+2}{18}\ge3\sqrt[3]{\dfrac{a^3\left(b+1\right)\left(c+2\right)}{216\left(b+1\right)\left(c+2\right)}}=\dfrac{a}{2}\)
Tương tự: \(\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c+1}{12}+\dfrac{a+2}{18}\ge\dfrac{b}{2}\)
\(\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}+\dfrac{a+1}{12}+\dfrac{b+2}{18}\ge\dfrac{c}{2}\)
Cộng vế:
\(VT+\dfrac{5}{36}\left(a+b+c\right)+\dfrac{7}{12}\ge\dfrac{1}{2}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\dfrac{13}{36}\left(a+b+c\right)-\dfrac{7}{12}\ge\dfrac{13}{36}.3\sqrt[3]{abc}-\dfrac{7}{12}=\dfrac{1}{2}\) (đpcm)
\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b+2}{36}+\dfrac{c+3}{48}\ge3\sqrt[3]{\dfrac{a^3\left(b+2\right)\left(c+3\right)}{1728\left(b+2\right)\left(c+3\right)}}=\dfrac{a}{4}\)
Tương tự: \(\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c+2}{36}+\dfrac{a+3}{48}\ge\dfrac{b}{4}\)
\(\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}+\dfrac{a+2}{36}+\dfrac{b+3}{48}\ge\dfrac{c}{4}\)
Cộng vế:
\(P+\dfrac{7\left(a+b+c\right)}{144}+\dfrac{17}{48}\ge\dfrac{a+b+c}{4}\)
\(\Rightarrow P\ge\dfrac{29}{144}\left(a+b+c\right)-\dfrac{17}{48}\ge\dfrac{29}{144}.3\sqrt[3]{abc}-\dfrac{17}{48}=\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(VT=\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{2}{\left(a+1\right)^2}+\dfrac{2}{\left(b+1\right)^2}+\dfrac{2}{\left(c+1\right)^2}\)
Mặt khác:
\(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1.1\right)^2}\ge\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{a}{b}\right)}+\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{b}{a}\right)}=\dfrac{1}{1+ab}\)
Do đó:
\(VT\ge\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)
\(VT\ge\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{1}{1+\dfrac{1}{c}}+\dfrac{1}{1+\dfrac{1}{a}}+\dfrac{1}{1+\dfrac{1}{b}}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
cho em hỏi một tí ạ
Chộ \(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1.1\right)^2}\ge\dfrac{1}{\left(ab+1\right)\left(1+\dfrac{a}{b}\right)}+\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{b}{a}\right)}\)
áp dụng công thức gì đây ạ