K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

a/ Xét tứ giác AEHF

HE vuông góc AB; AF vuông góc AB => HE//AF

AE vuông góc AC; HF vuông góc AC => AE//HH

=> AEHF là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi 1)

Mà ^BAC=90

=> AEHF là HCN => AH=EF (hai đường chéo HCN = nhau)

b/ Gọi O là giao của AH và EF

+ Xét tg vuông HCF có IH=IC => IF=IH (Trung tuyến thuộc cạnh huyền băng nửa cạnh huyền)

=> tg IHF cân tại I => ^IHF=^HFI (1)

+ Ta có AH=EF (cmt) và OA=OH; OE=OF (trong HCN các đường chéo cắt nhau tại trung điểm môic đường => OH=OF

=> tg OHF cân tại O => ^OHF=^OFH (2)

+ Mà ^IHF+^OHF=^AHC=90 (3)

=> ^HFI+^OFH=^EFI=90 => EF vuông góc với FI

16 tháng 12 2017

1a) A=D=E=90 độ

=>AEHD là hcn 

=>AH=DE

b)Xét tam giác DBH vuông tại D có:

DI là đường trung tuyến ứng với cạnh huyền BH

=>DI=BH/2=IH

=>tam giác IDH cân tại I

=>góc IDH=góc IHD (1)

Gọi O là gđ 2 đường chéo AH và DE

=>OD=OA=OE=OH (tự c/m)

=> tam giác DOH cân tại O

=> góc ODH=góc OHD(2)

từ (1) và (2) => góc ODH+góc IDH=90 độ(EHD+DHI=90 độ)

=>IDvuông góc DE(3)

Cmtt ta được: KEvuông góc DE(4)

Từ (3)và (4) => DI//KE.

16 tháng 12 2017

2a) Ta có góc HAB+góc HAC=90 độ (1)

Xét tam giác ABC vuông tại A có 

AM là đg trung tuyến ứng vs cạnh huyền BC

=>AM=MC

=>tam giác AMC cân

=>góc MAC=góc ACM

Lại có: góc HAC+góc ACH=90 độ(2)

Từ (1) và (2) => góc BAH=góc ACM

Mà góc AMC=góc MAC(cmt)

=>ABH=MAC(3)

b)A=D=E=90 độ

=>AFHE là hcn

Gọi O là gđ EF và AM

OA=OF(tự cm đi nha)

=>tam giác OAF cân

=>OAF=OFA(4)

Ta có : OAF+MCA=90 độ(5)

Từ (3)(4) và (5)

=>MAC+OFA=90 độ

Hay AM vuông góc EF

k giùm mình nha.

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

Suy ra: AM=EF

b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

=>AH=4,8cm

c: Xét ΔABC có 

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Ta có: ΔAHC vuông tại H

mà HF là đường trung tuyến

nên HF=AC/2=AF

mà AF=ME

nên HF=ME

Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của AC

Do đó: FE là đường trung bình

=>FE//BC

Xét tứ giác EHMF có

MH//FE

Do đó: EHMF là hình thang

mà EM=HF

nên EHMF là hình thang cân

Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

=>EF=AH

24 tháng 10 2021

b: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{EAF}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: AH=EF

21 tháng 11 2020

Bạn tự vẽ hình nhé!

a) Xét tứ giác HFAEHFAE có HFAˆ=FAEˆ=AEHˆ=900HFA^=FAE^=AEH^=900 nên HFAEHFAE là hình chữ nhật.

Do đó:

AFEˆ=900−EFHˆ=900−HAEˆ=900−(900−BAHˆ)AFE^=900−EFH^=900−HAE^=900−(900−BAH^)

=BAHˆ=900−Bˆ(1)=BAH^=900−B^(1)

Tam giác ABCABC vuông có MM là trung điểm cạnh huyền nên AM=BC2=BMAM=BC2=BM

⇒△AMB⇒△AMB cân tại MM

⇒Bˆ=MBAˆ=MABˆ(2)⇒B^=MBA^=MAB^(2)

Từ (1);(2)⇒AFEˆ=900−MABˆ(1);(2)⇒AFE^=900−MAB^

⇔AFEˆ+MABˆ=900⇔AFE^+MAB^=900

⇒EF⊥AM⇒EF⊥AM

b) Sửa lại đề: EF∥BDEF∥BD

Tam giác BACBAC có MM là trung điểm BCBC, NN là trung điểm ABAB nên MNMN là đường trung bình của tam giác ABCABC. Do đó MN∥ACMN∥AC. Mà AB⊥AC⇒MN⊥ABAB⊥AC⇒MN⊥AB

Ta thấy tam giác BAMBAM có AH⊥BM,MN⊥BAAH⊥BM,MN⊥BA và AH∩MN=DAH∩MN=D nên DD là trực tâm tam giác BAMBAM

Do đó: BD⊥AMBD⊥AM. Mà EF⊥AM⇒BD∥EF