K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

nếu theo đề bài thì x--->0 2014/IxI cực lớn đến vô cùng.

vậy có thể đề là A=2014/(IxI+2015) nếu vậy A lớn nhất khi (IxI+2015) nhỏ nhất => x=0

10 tháng 9 2017

a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)

Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)

Vậy MinA = 11 khi -2 =< x =< 9

b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)

Dấu "=" xảy ra khi x = 1

Vậy MaxB = 3/4 khi x=1

10 tháng 9 2017

Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)

Vậy \(A_{min}=11\) khi \(2\le x\le9\)

5 tháng 2 2020

Bài 1 : 

Đề câu a) có thêm \(n\inℤ\)

a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)

Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)

\(\Rightarrow n\left(n+1\right)+2⋮2\)

\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)

hay \(A⋮̸2\) ( đpcm )

b) Ta có : \(\left|2x-4\right|\ge0\forall x\)

\(\Rightarrow-\left|2x-4\right|\le0\forall x\)

\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)

hay \(A\le18\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)

Vậy max \(A=18\) khi \(x=2\)

5 tháng 2 2020

b1 : 

a,n^2 + n + 3

= n(n + 1) + 3

n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2

=> n(n+1) + 3 không chia hết cho 2

b, A = 18 - |2x - 4| 

|2x - 4| > 0 => - |2x - 4| < 0

=> 18 - |2x - 4| < 18 

=> A < 18

xét A = 18 khi |2x - 4| = 0

=> 2x - 4 = 0

=> x = 2

c, A = |5 - x| + 2015

|5 - x| > 0

=> |5 - x| + 2015 > 2015

=> A  > 2015

xét A = 2015 khi |5 - x| = 0

=> 5 - x = 0 => x = 5

Bài 2: 

a: Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: Ta có: \(-x^2+x+2\)

\(=-\left(x^2-x-2\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

f: Ta có: \(x^2-2x+y^2-4y+6\)

\(=x^2-2x+1+y^2-4y+4+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)

Dấu '=' xảy ra khi x=1 và y=2

e: Ta có: \(3x^2-6x+1\)

\(=3\left(x^2-2x+\dfrac{1}{3}\right)\)

\(=3\left(x^2-2x+1-\dfrac{2}{3}\right)\)

\(=3\left(x-1\right)^2-2\ge-2\forall x\)

Dấu '=' xảy ra khi x=1

Bài 1: 

a: Ta có: \(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2\cdot\left[\left(x+3\right)^2-1\right]=0\)

\(\Leftrightarrow\left(x-3\right)^2\cdot\left(x+2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-4\end{matrix}\right.\)

b: Ta có: \(x^3-3x+2=0\)

\(\Leftrightarrow x^3-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

29 tháng 10 2016

GTNN A= 2 khi x=2016

12 tháng 4 2016
  • Có:  /x2 - 4/ >= 0 Vx

=>/x2 - 4/ - 2014 >= -2014 Vx

Dấu = xảy ra <=> x2 - 4 = 0

<=> x2 = 4

<=> x = 2

=> Amin =-2014 <=> x = 2

  • Có -x2 <= 0 Vx

=>  -x2 + 1 <= 1 Vx

Dấu = xảy ra <=> -x2 = 0

<=> x = 0

=>Amax = 1 <=> x = 0

  • Có (5x+2)2 >= 0 Vx

5 - (5x+2)<= 5

Dấu = xảy ra <=> 5x+2 = 0

<=> 5x = -2

<=> x = -2/5

=> Bmax = 5 <=> x = -2/5

  • Có-/x^2+7/ <= 0 Vx

=> 2015-/x^2+7/ <= 2015 Vx

Dấu = xảy ra <=> x^2+7 = 0

<=> x2 = -7

<=> x = \(\sqrt{-7}\)

=> C max = 2015 <=> x = \(\sqrt{-7}\)

22 tháng 4 2016

Thanks bạn nhìu ^_^

28 tháng 7 2023

`x^2+x+1=x^2+x+1/4+3/4=(x+1/2)^2 +3/4`

Vì `(x+1/2)^2 >= 0` với mọi `x`

  `=>(x+1/2)^2 +3/4 >= 3/4` với mọi `x`

 `=>` Biểu thức Min `=3/4<=>x=-1/2`

_____________

`(x-3)(x+5)+4=x^2+2x-11=x^2+2x+1-12=(x+1)^2-12`

  Vì `(x+1)^2 >= 0` với mọi `x`

    `=>(x+1)^2-12 >= -12` với mọi `x`

 `=>` Biểu thức Min `=-1/2<=>x=-1`