Cho tam giác ABC vuông tại A, lấy điểm M bất kì trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM tại D. Đường thẳng này cắt tia BA tại E.
a) Chứng minh tam giác DBE đồng dạng tam giác HAC b) Chứng minh góc EAD= góc ECB
c) Khi M di chuyển trên cạnh AC. Chứng minh BM.BD + CM.CA có giá trị không đổi
a) -△DBE và △ACE có: \(\widehat{BDE}=\widehat{CAE};\widehat{BEC}\) là góc chung.
\(\Rightarrow\)△DBE∼△ACE (g-g).
b) △DBE∼△ACE \(\Rightarrow\dfrac{EB}{EC}=\dfrac{ED}{EA}\Rightarrow\dfrac{EB}{ED}=\dfrac{EC}{EA}\)
-△EAD và △ECB có: \(\dfrac{EB}{ED}=\dfrac{EC}{EA};\widehat{BEC}\) là góc chung.
\(\Rightarrow\)△EAD∼△ECB (c-g-c) nên \(\widehat{EAD}=\widehat{ECB}\)
c) EM cắt BC tại F.
-△BCE có: 2 đường cao BD và CA cắt nhau tại M.
\(\Rightarrow\)M là trực tâm của △BCE.
\(\Rightarrow\)EM⊥BC tại F.
-△BMF và △BCD có: \(\widehat{DBC}\) là góc chung, \(\widehat{BFM}=\widehat{BDC}=90^0\).
\(\Rightarrow\)△BMF∼△BCD (g-g).
\(\Rightarrow\dfrac{BM}{BC}=\dfrac{BF}{BD}\Rightarrow BM.BD=BC.BF\left(1\right)\)
-△CMF và △CBA có: \(\widehat{CFM}=\widehat{CAB}=90^0,\widehat{CBA}\) là góc chung.
\(\Rightarrow\)△CMF∼△CBA (g-g).
\(\Rightarrow\dfrac{CM}{CB}=\dfrac{CF}{CA}\Rightarrow CM.CA=CB.CF\left(2\right)\)
-Từ (1) và (2) suy ra:
\(BM.BD+CM.CA=BC.BF+CB.CF=BC\left(BF+CF\right)=BC.BC=BC^2\)
không đổi.