Cho tam giác ABC vuông tại A có AH là đường cao.Biết AB=6cm,AC=8cm.Tính độ dài đường cao AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tam giác ABC vuông tại A nên áp dụng Py-ta-go:
\(\Rightarrow BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4.8\left(cm\right)\)
b) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng
\(\Rightarrow AE.AB=AH^2\)
tam giác AHI vuông tại H có đường cao HF nên áp dụng hệ thức lượng
\(\Rightarrow AF.AI=AH^2\Rightarrow AF.AI=AE.AB\Rightarrow\dfrac{AF}{AB}=\dfrac{AE}{AI}\)
Xét \(\Delta AEF\) và \(\Delta AIB:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AE}{AI}=\dfrac{AF}{AB}\\\angle BAIchung\end{matrix}\right.\)
\(\Rightarrow\Delta AEF\sim\Delta AIB\left(c-g-c\right)\)
1: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Tam giác ABC vuông tại A. Áp dụng Pitago
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=BC^2-AB^2=25^2-15^2=400\left(cm\right)\)
=> AC = 20 (cm)
Tam giác ABC vuông tại A có AH là đường cao
\(\Rightarrow AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)
Tam giác ABH vuông tại H. Áp dụng Pitago
\(\Rightarrow AB^2=BH^2+AH^2\)
\(\Rightarrow AH^2=AB^2-BH^2=15^2-9^2=144\left(cm\right)\)
=> AH = 12 (cm)
Tam giác ABC vuông tại A. Áp dụng Pitago
BC2=AB2+AC2BC2=AB2+AC2
⇒AC2=BC2−AB2=252−152=400(cm)⇒AC2=BC2−AB2=252−152=400(cm)
=> AC = 20 (cm)
Tam giác ABC vuông tại A có AH là đường cao
⇒AB2=BH.BC⇒AB2=BH.BC
⇒BH=AB2BC=15225=9(cm)
a: AC=8cm
b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
c: AH=4,8cm
bn ơi câu a bn giải thích ra luôn giùm mik ik
câu b,c nx
Theo \(pi-ta-go\) ta có : \(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\) \((cm)\)
Áp dụng hệ thức lượng vào tam giác \(ABC\) vuông và đường cao \(AH\) ta có :
\(AH.BC=AB.AC\)\(\Rightarrow\) \(AH=\dfrac{6.8}{10}=4,8(cm)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow AB^2=4\cdot9=36\)
hay AB=6(cm)
Vậy: AB=6cm
=1/6^2 + 1/8^2 =25/576
=> AH^2 =576/25
=> AH=24/5
Áp dụng định lí Pytago vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{100}{48^2}\)
\(\Leftrightarrow AH^2=\left(\dfrac{48}{10}\right)^2\)
hay AH=4,8cm
Vậy: AH=4,8cm