Cho P là tích của 2016 số nguyên tố đầu tiên: CMR P-1 và P+1 không phải là số chính phương
Ai giải gúp mình nha?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = 2.3.4....a => P chia hết cho 3
=> P - 1 : 3 dư 2 => Ko là SCP
Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2
=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP
=> P - 1 và P + 1 Ko là SCP
Giải bài tổng quát sau: cho p là tích n số nguyên tố đầu tiên, CM p-1 và p+1 không là số chính phương
Giải:
Do p là tích của n số nguyên tố đầu tiên nên p không chia hết cho 4 => p có dạng: 4k+1, 4k+2, 4k+3
Nếu p=4k+1 => p+1 chia 4 dư 2=> không chính phương do số chính phương chia 4 dư 0 hoặc 1
Nếu p=4k+2 => p+1 chia 4 dư 3, => không chính phương
Nếu p=4k+3 => p-1 chia 4 dư 2 => không chính phương
Giả sử p-1 là số chính phương
Do p là tích của 2016 số nguyên tố đầu tiên
Suy ra:p chia hết 3. Do đó
\(p-1\equiv-1\left(mod3\right)\);\(p+1\equiv1\left(mod3\right)\)
Đặt \(p-1=3k-1;p+1=3k+1\)
Một số chính phương không có dạng \(3k-1;3k+1\)
Mẫu thuẫn với giả thiết ->Đpcm
Đặt \(p-1=3k-1\)
Một số chính phương không có dạng \(3k-1\) (mâu thuẫn với gt)
Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và không chia hết cho 4
Ta chứng minh p + 1 là số chính phương
Giả sử p + 1 là số chính phương. Đặt p + 1 = m2
Vì p chẵn nên p + 1 lẻ => m lẻ => m2 lẻ
Đặt m = 2k + 1. Ta có : m2 = 4k2 + 4k + 1 => p + 1 = 4k2 + 4k + 1 => p = 4k2 + 4k = 4k(k+1) chia hết cho 4
Ta chứng minh p – 1 là số chính phương
Ta có: p = 2.3.5…. chia hết cho 3 => p -1 = 3k + 2
Vì không có số chính phương nào có dạng 3k + 2 nên p – 1 không phải số chính phương
Vậy nếu p là tích 2016 số nguyên tố đầu tiên thì p + 1 và p – 1 không phải số chính phương
nhận xét:số chính phương khi chia cho 3 hay 4 đều có số dư là 0 hoặc 1
Ta có:\(P=2\cdot3\cdot5\cdot....\)
Do p chia hết cho 3 nên p-1 chia 3 dư 2.theo nhận xét suy ra p-1 không phải là số chính phương(1)
dễ thấy p không chia hết cho 4 và p chia hết cho 2 nên p chia 4 dư 2 suy ra p+1 chia 4 dư 3.theo nhận xét suy ra p+1 không là số chính phương
TỪ(1),(2) suy ra điều cần chứng minh
Giả sử p-1 không là số chính phương
Vì p là tích 2016 số nguyên tố đầu , trong đó có chứa thừa số 3
=> p chia hết cho 3
=> p-1 có dạng 3k - 1 , p+1=3k+1 (k thuộc N)
nhưng 3k+1 , 3k-1 ko có dạng là số chính phương
=> điều giả sử là sai
=> p-1 , p+1 ko là số chính phương
P = 2.3.4....a => P chia hết cho 3
=> P - 1 : 3 dư 2 => Ko là SCP
Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2
=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP
=> P - 1 và P + 1 Ko là SCP