K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

ko trả lời cũng k bạn rảnh quá ha

11 tháng 8 2018

A B C D E

21 tháng 4 2022

 

Vì ΔABC cân tại A nên đường phân giác của góc ở đỉnh A cũng là đường cao từ A.

Suy ra: AD ⊥ BC

Ta có: CH ⊥ AB (gt)

Tam giác ABC có hai đường cao AD và CH cắt nhau tại D nên D là trực tâm của ∆ABC

Suy ra BD là đường cao xuất phát từ đỉnh B đến cạnh AC.

Vậy BD ⊥ AC.

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

BD=CE

góc ABD=góc ACE

=>ΔADB=ΔAEC

=>AB=AC

=>ΔABC cân tại A

b: ΔABC cân tại A

mà AD là đường phân giác

nên AD vuông góc BC

Xét ΔABC có

AD,CH là đường cao

AD cắt CH tại D

=>D là trực tâm

=>BD vuông góc AC

5 tháng 2 2022

undefined

Xét ΔABD và ΔACE có

AB=AC

góc BAD chung

AD=AE

=>ΔABD=ΔACE
Sửa đề: ΔGBC cân tại G

Xét ΔEBC và ΔDCB có

EB=DC

góc EBC=góc DCB

BC chung

=>ΔEBC=ΔDCB

=>góc GBC=góc GCB

=>ΔGBC cân tại G

12 tháng 3 2023

Có `Delta ABC` cân tại `A=>AB=AC;hat(ABC)=hat(ACB)`

Có `hat(ABC)=hat(ACB)(cmt)`

mà `BD` là p/g `hat(ABC)`

`CE` là p/g `hat(ACB)`

nên `hat(B_1)=hat(C_1)`

Xét `Delta ABD` và `Delta ACE` có :

`{:(hat(B_1)=hat(C_1)(cmt)),(AB=AC(cmt)),(hat(A)-chung):}}`

`=>Delta ABD=Delta ACE(g.c.g)`

`=>BD=CE` ( 2 cạnh t/ứng )(đpcm)

A B C D E

BD là đường phân giác của góc B nên ta có :

\(\widehat{ABD}=\widehat{CBD}=\dfrac{1}{2}\widehat{B}\) ( 1 )

CE là đường phân giác của góc C nên ta có :

\(\widehat{ACE}=\widehat{BCE}=\dfrac{1}{2}\widehat{C}\) ( 2 )

Từ ( 1 ) , ( 2 ) = > \(\widehat{ABD}=\widehat{ACE}\)

Xét tam giác ADB và tam giác AEC ta có :

Góc A chung 

AB = AC ( gt )

\(\widehat{ABD}=\widehat{ACE}\) ( cmt )

= > \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)

 

= > BD = CE ( 2 cạnh tương ứng )

13 tháng 9 2015

Bạn vào

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

26 tháng 10 2022

a: Xét ΔADB và ΔAEC có

góc BAD chung

AB=AC

góc ABD=góc ACE

Do đó: ΔADB=ΔAEC

b: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

=>BEDC là hình thang

mà góc EBC=góc DCB

nên BEDC là hình thang cân

Xét ΔEDB có góc EDB=góc EBD(=góc DBC)

nên ΔEDB cân tại E

=>BE=ED=DC

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...