K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a

Đường tròn (O), đường kính AH có 

AMH^=90∘⇒HM⊥AB.

ΔAHB vuông tại H có 

HM⊥AB⇒AH2=AB.AM.

Chứng minh tương tự AH2=AC.AN.

\(\Rightarrow\) AB.AM=AC.AN.

B

Theo câu a ta có 

AB.AM=AC.AN⇒AMAC=ANAB.

Tam giác AMN và tam giác ACB có MAN^ chung và AMAC=ANAB.

⇒ΔAMN∼ΔACB (c.g.c).

\(\widehat{ACB}\)

c.

Tam giác ABC vuông tại A có I là trung điểm của 

BC⇒IA=IB=IC.

⇒ΔIAC cân tại 

Theo câu b ta có \(\widehat{AMN}\)
 

Mà \(\widehat{BAD}\)

\(\widehat{BAD}\)

BAD^+IAC^=90∘⇒BAD^+AMN^=90∘⇒ADM^=90∘.

Ta chứng minh ΔABC vuông tại A có 

AH⊥BC⇒AH2=BH.CH.

Mà 

\(\Rightarrow\) BMNC là tứ giác nội tiếp.

10 tháng 4 2021

TRẢ HIỂU GÌ ?????????????????????

31 tháng 1 2022

tính : \(BC=5.AH=\dfrac{12}{5}\)

+ gọi K là tâm của đường tròn ngoại tiếp ΔBMN .Khi đó , KI là đường trung trực của đoạn MN

Do 2 ΔAID và AOH đồng dạng nên => góc ADI = góc AOH = 90\(^o\)

=> OA ⊥ MN

do vậy : KI//OA

+ do tứ giác BMNC nội tiếp nên OK⊥BC . Do đó AH// KO

+ dẫn đến tứ giác AOKI là hình bình hành.

Bán kính:

\(R=KB=\sqrt{KO^2+OB^2}=\sqrt{AI^2+\dfrac{1}{4}BC^2}=\sqrt{\dfrac{1}{4}AH^2+\dfrac{1}{4}BC^2=\sqrt{\dfrac{769}{10}}}\)

31 tháng 1 2022

thank

11 tháng 12 2021

a: AC=8cm

=>HC=6,4cm

=>OH=3,2cm

29 tháng 12 2017

A C B H O D E M N

a) Do D, E thuộc đường tròn đường kính DE nên \(\widehat{DAE}=\widehat{DHE}=90^o\)

Xét tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.

Do ADHE là hình chữ nhật nên hai đường chéo DE và AH cắt nhau tại trung điểm mỗi đường. Mà O là trung điểm AH nên O là trung điểm DE.

Vậy D, O, E thẳng hàng.

b) Do AH vuông góc BC nên BC cũng là tiếp tuyến tại H của đường tròn (O)

Áp dụng tính chất hai tiếp tuyến cắt nhau, ta có : DM = MH.

Xét tam giác vuông ADH có DM = MH nên DM = MH = MB hay M là trung điểm BH.

Tương tự N là trung điểm HC.

c) Dễ thấy MDEN là hình thang vuông.

Vậy thì \(S_{MDEN}=\frac{\left(MD+EN\right).DE}{2}=\frac{\left(MH+HN\right).AH}{2}\)

\(=\frac{MN.AH}{2}=\frac{\frac{1}{2}BC.AH}{2}=\frac{1}{4}BC.AH=\frac{1}{4}AB.AC\)

\(=\frac{1}{4}.9.8=18\left(cm^2\right)\)

a: góc NED+góc NCD=180 độ

=>NEDC nội tiếp

b: ΔAHB vuôg tại H có HM vuông góc AB

nên AM*AB=AH^2

ΔAHC vuông tại H có HN vuông góc AC

nên AN*AC=AH^2

=>AM*AB=AN*AC