\(\left[3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2\right]:5\left(x-y\right)^2\)
chia da thuc cho don thuc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình sẽ viết tổng quát A thê này nhé:
\(A=\left(xy^2\right)\left(x^5y^4\right)\left(x^9y^6\right)...\left(x^{4n-3}y^{2n}\right)\)(giả sử A có n nhân tử)
Theo đề bài ta có:
\(\dfrac{n\left(4n-3+1\right)}{2}+\dfrac{n\left(2n+2\right)}{2}=3675\)
\(\Leftrightarrow2n^2-n+n^2+n=3675\)
\(\Leftrightarrow3n^2=3675\Leftrightarrow n^2=1225\Leftrightarrow n=35\)
Bậc cao nhấ của biến x là:\(4.35-3=137\)
Ta có (x^2 + y^2 )^3 + (z^2 – x^2 )^3 – (y^2 + z^2 )^3
= (x^2 + y^2 )^3 + (z^2 – x^2 )^3 + (-y^2 - z^2 )^3
Ta thấy x^2 + y^2 + z^2 – x^2 – y^2 – z^2 = 0
=> áp dụng nhận xét ta có: (x^2+y^2 )^3+ (z^2 -x^2 )^3 -y^2 -z^2 )^3
= 3(x^2 + y^2 ) (z^2 –x^2 ) (-y^2 – z^2 )
= 3(x^2+y^2 ) (x+z)(x-z)(y^2+z^2 )
\(5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2=\left(x-y\right)^2\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]\)
\(\left(y-x\right)^2=\left(x-y\right)^2\)
\(\Rightarrow\left[5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2\right]:\left(y-x\right)^2=5\left(x-y\right)^2-3\left(x-y\right)+4\)
(x -y)3 - 1 - 3(x -y)(x - y - 1)
= (x -y)3 - 3(x -y)(x - y - 1) - 1
Đặt x - y = t, khi đó ta có:
t3 - 3t. (t - 1) - 1
= t3 - 3t2 + 3t - 1
= (t - 1)3
Thay t = x - y vào (t - 1)3 , ta có: ( x - y - 1)3
Vậy (x -y)3 - 1 - 3(x -y)(x - y - 1) = ( x - y - 1)3
b: Ta có: \(\left(4x^4-3x^3\right):\left(-x^3\right)+\left(15x^2+6x\right):3x=0\)
\(\Leftrightarrow-4x+3+5x+2=0\)
\(\Leftrightarrow x=-5\)
a) =(x-y)5+(x-y)3=(x-y)3[(x-y)2+1]
b) =33(y-2x)3:-9(y-2x)=-3(y-2x)2
c) =(x-y)2 [3(x-y)3-2(x-y)2+3]:5(x-y)2=[3(x-y)3-2(x-y)2+3]/5