Cho tam giác ABC cân tại A có Ab bằng 6 com,Ac = 8 cm a, Tính Bc b,Trên tia đối của Ab lấy M sao cho AB = AM . CMR tam giác ABC bằng tam giác ACM Từ đó chứng minh CA là phân giác của góc BCM c,Kẻ Ah vuông góc BC,AK vuông góc CM. chứng minh HK song song BM d,HK cắt AC tại I. chứng minh AC là đường trung trực của HK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài toán vô lí quá nếu mà cân tại A thì AB = AC chứ đáng lẽ ra là vuông tại A chứ:
nếu là vuông tại A thì có:
a.Xét tam giác ABC vuông tại A:
BC2=AB2+AC2(định lí pytago)
hay BC2=62+82
BC2=36+64
BC2= \(\sqrt{100}\)
BC=10(cm)
vậy BC=10cm
Xét ΔABC và ΔACM có:
AB=AM(gt)
AC chung
^CAB=^CAM=90o
=>ΔABC=ΔACM(trường hợp gì tự biết) :)
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a/ Xét ΔABM;ΔACMΔABM;ΔACM có :
⎧⎩⎨⎪⎪AB=ACBˆ=CˆMB=MC{AB=ACB^=C^MB=MC
⇔ΔAMB=ΔAMC(c−g−c)⇔ΔAMB=ΔAMC(c−g−c)
b/ Xét ΔBHM;ΔCKMΔBHM;ΔCKM có :
⎧⎩⎨⎪⎪⎪⎪BHMˆ=CKMˆ=900Bˆ=CˆMB=MC{BHM^=CKM^=900B^=C^MB=MC
⇔ΔBHM=ΔCKM(ch−gn)⇔ΔBHM=ΔCKM(ch−gn)
⇔BH=CK
Giúp với tớ cần gấp