K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

Bn tham khảo ở đây nhé, mk lm r`: Câu hỏi của Su su - Toán lớp 7 | Học trực tuyến

25 tháng 10 2016

tớ vào xem ko dk

25 tháng 8 2019

\(\Leftrightarrow\left(\frac{3}{4}x-\frac{9}{16}\right)\left(\frac{1}{3}-\frac{3}{5}.\frac{1}{x}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{4}x-\frac{9}{16}=0\\\frac{1}{3}-\frac{3}{5}.\frac{1}{x}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{9}{5}\end{cases}}\)

Vậy \(x\in\left\{\frac{3}{4};\frac{9}{5}\right\}\)

19 tháng 7 2017

câu 2

\(...=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|=-4\)

câu 1

\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{3}{\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)

\(P< -1\Leftrightarrow\frac{-3\sqrt{x}}{2\sqrt{x}+4}+1< 0\Leftrightarrow-\sqrt{x}+4< 0\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)

20 tháng 5 2019

ĐKXĐ : \(x\ge0\)

\(A=\frac{2}{3}.\frac{2+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2}{\left[1+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2\right]\left[1+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2\right]}.\frac{2010}{x+1}\)

\(A=\frac{2}{3}.\frac{2+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}+\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2-2\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)}{\left[1+\frac{\left(2\sqrt{x}+1\right)^2}{3}\right]\left[1+\frac{\left(2\sqrt{x}-1\right)^2}{3}\right]}.\frac{2010}{x+1}\)

\(A=\frac{2}{3}.\frac{2+\left(\frac{4\sqrt{x}}{\sqrt{3}}\right)^2-\frac{2\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}{3}}{\left(\frac{4x+4\sqrt{x}+4}{3}\right)\left(\frac{4x-4\sqrt{x}+4}{3}\right)}.\frac{2010}{x+1}\)

\(A=\frac{2}{3}.\frac{2+\frac{16x}{3}-\frac{2\left(4x-1\right)}{3}}{\frac{16\left(x+1+\sqrt{x}\right)\left(x+1-\sqrt{x}\right)}{9}}.\frac{2010}{x+1}\)

\(A=\frac{2}{3}.\frac{\frac{6+16x-8x+2}{3}}{\frac{16\left(x+1\right)^2-16x}{9}}.\frac{2010}{x+1}\)

\(A=\frac{x+1}{x^2+x+1}.\frac{2010}{x+1}=\frac{2010}{x^2+x+1}\le2010\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=0\)

... 

23 tháng 5 2019

\(A\le\frac{4.2010}{3}\) ma ban quan

14 tháng 8 2017

dễ mà bn

1 tháng 12 2016

Dk: \(\orbr{\begin{cases}x\ne\frac{3}{2}\\x\ne-1\end{cases}}\)

\(\frac{\left(x-1\right)}{2x-3}=\frac{\left(1-3x\right)}{\sqrt{\left(x+1\right)^2}}=\frac{\left(1-3x\right)}{!x+1!}\)

\(x\ge1\)

\(\left(x-1\right)\left(x+1\right)=\left(1-3x\right)\left(2x-3\right)\)

x^2-1=11x-6x^2-3

7x^2-11x+2=0

\(\orbr{\begin{cases}x_{ }_{ }_1=\frac{11-\sqrt{65}}{14}< 1\left(loai\right)\\x_2=\frac{11+\sqrt{65}}{14}\left(nhan\right)\end{cases}}\)

\(x< 1\)

-(x^2-1)=11x-6x^2-3

5x^2-11x+4=0

\(\orbr{\begin{cases}x_1=\frac{5-\sqrt{41}}{10}_{ }\left(nhan\right)\\x_2=\frac{5+\sqrt{41}}{10}\left(loai\right)\end{cases}}\)

5 tháng 12 2016

cảm ơn bạn