cho 0 \(\le a\le2,0\le b\le2,0\le c\le2\)và a+b+c=3. Chứng minh a^2+b^2+c^2bé hơn hoặc bằng 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow8-4\left(a+b+c\right)+2\left(ab+bc+ca\right)-abc\ge0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\left(a+b+c\right)-8+abc\)
\(\Leftrightarrow2\left(ab+bc+ca\right)\ge12-8+abc\ge4\)
\(\Rightarrow2\left(ab+bc+ca\right)\ge4\)
\(\Rightarrow-2\left(ab+bc+ca\right)\le-4\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\le9-4=5\)(Đpcm)
Dấu = khi \(\hept{\begin{cases}\left(2-a\right)\left(2-b\right)\left(2-c\right)=0\\abc=0\\a+b+c=3\end{cases}}\)
\(\Rightarrow\left(a;b;c\right)=\left(2;1;0\right)\)và hoán vị.
a = 2 ( t/m )
b = 1 ( t/m )
c = 0 ( t/m )
vậy \(a^2+b^2+c^2\le5\)
Vì \(0\le a\le2;0\le b\le2;0\le c\le2\Rightarrow\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)\(\Leftrightarrow8-4\left(a+b+c\right)+2\left(ab+bc+ca\right)-abc\ge0\)\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\left(a+b+c\right)-8+abc\ge4\)\(\Leftrightarrow2\left(ab+bc+ca\right)\ge12-8+abc\ge4\)
\(\Rightarrow\)\(2\left(ab+bc+ca\right)\ge4\)
\(\Leftrightarrow-2\left(ab+bc+ca\right)\le-4\)
Ta có :
\(a+b+c=3\Rightarrow\left(a+b+c\right)^2=9\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\le9-4=5\Rightarrowđpcm\)Đẳng thức xảy ra khi
\(\left(2-a\right)\left(2-b\right)\left(2-c\right)=0\)
\(\left[{}\begin{matrix}2-a=0\\2-b=0\\2-c=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)
Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)
=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)0
=>a2+b2+c2 \(\le\)6
Dấu "=" xảy ra <=> (a+1)( a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị
Ta có \(\left(a+2\right)\left(b+2\right)\left(c+2\right)+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow4\left(ab+bc+ca\right)+16\ge0\)
\(\Leftrightarrow ab+bc+ca\ge-4\).
Lại có: \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=0\).
Do đó \(\left(ab+bc+ca\right)^2\le16\).
Mặt khác do \(a+b+c=0\) nên dễ dàng chứng minh được \(2\left(a^4+b^4+c^4\right)=\left(ab+bc+ca\right)^2\) (Bạn xem ở đây).
Do đó \(a^4+b^4+c^4\le32\) (đpcm).
Do \(\left\{{}\begin{matrix}a\ge0\\b\ge1\\a+b+c=5\end{matrix}\right.\) \(\Rightarrow c\le4\)
\(\Rightarrow2\le c\le4\Rightarrow\left(c-2\right)\left(c-4\right)\le0\Rightarrow c^2\le6c-8\)
\(0\le a\le1< 6\Rightarrow a\left(a-6\right)\le0\Rightarrow a^2\le6a\)
\(1\le b\le2< 5\Rightarrow\left(b-1\right)\left(b-5\right)\le0\Rightarrow b^2\le6b-5\)
Cộng vế:
\(a^2+b^2+c^2\le6\left(a+b+c\right)-13=17\)
\(A_{max}=17\) khi \(\left(a;b;c\right)=\left(0;1;4\right)\)
từ giả thuyết suy ra : abc >0
có 2>a,c,b ->> (2-a)(2-b)(2-c)\(\ge\)0
\(\Leftrightarrow\)8+2(ab+ac+bc) -4(a+b+c)-abc \(\ge\)0
\(\Leftrightarrow\)8+2(ab+ac+bc)-4.3-abc \(\ge\)0
\(\Leftrightarrow\)2(ab+ac+bc) \(\ge\)4+abc \(\ge\)4 (1)
Cộng a2+b2+c2 vào (1)
2(ab+ac+bc)+a2+b2+c2\(\ge\)4+a2+b2+c2
(a+b+c)2-4\(\ge\)a2+b2+c2
thay a+b+c=3 vào
9-4\(\ge\)a2+b2+c2
5 \(\ge\)a2+b2+c2
a2+b2+c2 \(\le\)5
Từ a+b+c=6 \(\Rightarrow\)a+b=6-c
Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9
\(\Leftrightarrow\)ab=9-c(a+b)
Mà a+b=6-c (cmt)
\(\Rightarrow\)ab=9-c(6-c)
\(\Rightarrow\)ab=9-6c+c2
Ta có: (b-a)2\(\ge\)0 \(\forall\)b, c
\(\Rightarrow\)b2+a2-2ab\(\ge\)0
\(\Rightarrow\)(b+a)2-4ab\(\ge\)0
\(\Rightarrow\)(a+b)2\(\ge\)4ab
Mà a+b=6-c (cmt)
ab= 9-6c+c2 (cmt)
\(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)
\(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2
\(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0
\(\Rightarrow\)-3c2+12c\(\ge\)0
\(\Rightarrow\)3c2-12c\(\le\)0
\(\Rightarrow\)3c(c-4)\(\le\)0
\(\Rightarrow\)c(c-4)\(\le\)0
\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)
*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)
*