1)CMR \(7^{7^7}\) và \(7^{7^{7^7}}\) có 2 chữ số tận cùng giống nhau
2)Tìm 3 chữ số tận cùng của \(A=26^{2^{2001}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=7+7^2+7^3+...+7^{16}\)
\(=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{13}+7^{14}+7^{15}+7^{16}\right)\)
\(=7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)+...+7^{13}\left(1+7+7^2+7^3\right)\)
\(=400\left(7+7^5+...+7^{13}\right)\) \(⋮400\)
\(\Rightarrow\)\(A\)\(⋮100\)
VẬY A TẬN CÙNG LÀ 0
Nếu x có các chữ số khác nhau mà lớn nhất thì x có 10 chữ số mà chữ số tận cùng là 0; 2; 4; 6; 8.
Để chia hết cho 8 thì x phải có ba chữ số tận cùng chia hết cho 8.
Ta sẽ lấy 3 chữ số nhỏ nhất là 0, 1, 2. Trong các số tạo thành chỉ có 120 chia hết cho 8.
Các chữ số còn lại ta xếp từ lớn đến nhỏ.
\(C=1+7+7^2+7^3+...+7^{200}\\ \\ \\ \Rightarrow7C=7+7^2+7^3+7^4+...+7^{201}\\ \\ \\ \Rightarrow7C-C=7^{201}-1\\ \\ \\ \Rightarrow6C=7^{201}-1\\ \\ \\ \Rightarrow C=\dfrac{7^{201}-1}{6}\)
Ta có \(7\equiv1\) (mod 6) \(\Rightarrow7^{201}\equiv1^{201}\) (mod 6) \(\Rightarrow7^{201}\equiv1\) (mod 6)
\(\Rightarrow7^{201}-1\equiv1-1\) (mod 6)
\(\Rightarrow C\) có tận cùng là 0
a) Đặt A = 1 + 7 + 72 + 73 + 74 + ... + 72015 (có 2016 số; 2016 chia hết cho 4)
A = (1 + 7 + 72 + 73) + (74 + 75 + 76 + 77) + ... + (72012 + 72013 + 72014 + 72015)
A = 400 + 74.(1 + 7 + 72 + 73) + ... + 72012.(1 + 7 + 72 + 73)
A = 400 + 74.400 + ... + 72012.400
A = 400.(1 + 74 + ... + 72012)
A = (...0) (đpcm)
b) Dãy số 1; 7; 72; 73; 74; ...; 72015 gồm có 2016 số hạng
Ta đã biết 1 số tự nhiên khi chia cho 2015 chỉ có thể có 2015 loại số dư là dư 0; 1; 2; 3; ...; 2014. Có 2016 số mà chỉ có 2015 loại số dư nên theo nguyên lí Dirichlet sẽ có ít nhất 2 số cùng dư khi chia cho 2015
Hiệu của 2 số này chia hết cho 2015
Vậy có thể tìm được 2 số hạng của dãy mà hiệu của chúng chia hết cho 2015
Bạn tham khảo bài giảng cô Huyền về Chữ số tận cùng nhé:
Bài giảng - Tìm chữ số tận cùng - Học toán với OnlineMath
Cái này phải dùng đồng dư thức mà ad , bài giảng trên ko nói nhiều về cái này