K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: (SAB) và (SAC) cùng vuông góc (ABC)

(SAB) cắt (SAC)=SA

=>SA vuông góc (ABC)

b: SA vuông góc CH

CH vuông góc AB

=>CH vuông góc (SAB)

=>(SCH) vuông góc (SAB)

NV
14 tháng 1

a.

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow BC\perp\left(SAB\right)\)

b.

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\\BH\in\left(ABC\right)\end{matrix}\right.\) \(\Rightarrow SA\perp BH\)

Lại có \(BH\perp AC\) (do BH là đường cao)

\(\Rightarrow BH\perp\left(SAC\right)\)

Mà \(SC\in\left(SAC\right)\)

\(\Rightarrow BH\perp SC\)

18 tháng 5 2021

undefined

12 tháng 8 2018

28 tháng 4 2017

18 tháng 12 2019

20 tháng 2 2021

Do (SAB) và (SAC) vuông góc với đáy (ABC)

Và (ABC) ∩ (SAC) = SA nên SA ⊥ (ABC)

BC ⊥ AH, BC ⊥ SA

⇒ BC ⊥ ((SAH)

Mà BC ⊂ (SBC) nên (SAH) ⊥ (SBC)

20 tháng 2 2021
SAB và SAC vuông góc với ABC Và (ABC ) (SAC) =SA nên SA vuông góc BC vuông góc với AH .BC vuông góc SA Mà BC (ABC)nên (SAH) vuông góc ABC BC vuông góc SAH
9 tháng 10 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) BC ⊥ SA & BC ⊥ AB) ⇒ BC ⊥ (SAB)

⇒ BC ⊥ SB.

⇒ tam giác SBC vuông tại B.

b) BH ⊥ AC & BH ⊥ SA ⇒ BC ⊥ (SAC)

⇒ (SBH) ⊥ (SAC).

c) d[B, (SAC)] = BH. Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

11 tháng 12 2018