\(3x^2-3y^2-2\left(x-y\right)^2.\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
( GHI CHI TIẾT LỜI GIẢI, KHÔNG GHI CHỈ ĐÁP ÁN )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{-1}{5}x^3\cdot\dfrac{1}{32}x^{20}y^5\cdot\dfrac{64}{27}x^3y^9\cdot z^{2022}=-\dfrac{2}{135}x^{26}y^{14}z^{2022}\)
`A=\frac{-1}{5}x^3 \times \frac{1}{32}x^{20}y^5 \times \frac{64}{27}x^3y^9 \times z^{2022}=-\frac{2}{135}x^{26}y^{14}z^{2022}`
Đặt \(x^2+x+1=t\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=t\left(t+1\right)-12=t^2+t-12=\left(t^2+t+\dfrac{1}{4}\right)-\dfrac{49}{4}=\left(t+\dfrac{1}{2}\right)^2-\left(\dfrac{7}{2}\right)^2=\left(t+\dfrac{1}{2}-\dfrac{7}{2}\right)\left(t+\dfrac{1}{2}+\dfrac{7}{2}\right)=\left(t-3\right)\left(t+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
= \(\left(x^2+x+1\right)\left[\left(x^2+x+1\right)+1\right]-12\)
= \(\left(x^2+x+1\right)^2\left(x^2+x+1\right)-12\)
= \(\left(x^2+x+1\right)\left(x^2+x+1\right)-3\left(x^2+x+1\right)+4\left(x^2+x+1\right)-4.3\)
= \(\left(x^2+x+1\right)\left(x^2+x-2\right)+4\left(x^2+x-2\right)\)
= \(\left(x^2+x+5\right)\left(x^2+x-2\right)\)
Bài 2:
1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)
=>(2x-1)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
2: \(9x^3-x=0\)
=>\(x\left(9x^2-1\right)=0\)
=>x(3x-1)(3x+1)=0
=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)
=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)
=>(2x-3)(2x-3-2)=0
=>(2x-3)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
=>\(2x^2+10x-5x-25-10x+25=0\)
=>\(2x^2-5x=0\)
=>\(x\left(2x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
1: \(3x^3y^2-6xy\)
\(=3xy\cdot x^2y-3xy\cdot2\)
\(=3xy\left(x^2y-2\right)\)
2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+3y-2\right)\)
3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)
\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)
\(=(x-2y)(3x-1+5x)\)
\(=\left(x-2y\right)\left(8x-1\right)\)
4: \(x^2-y^2-6y-9\)
\(=x^2-\left(y^2+6y+9\right)\)
\(=x^2-\left(y+3\right)^2\)
\(=\left(x-y-3\right)\left(x+y+3\right)\)
5: \(\left(3x-y\right)^2-4y^2\)
\(=\left(3x-y\right)^2-\left(2y\right)^2\)
\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)
\(=\left(3x-3y\right)\left(3x+y\right)\)
\(=3\left(x-y\right)\left(3x+y\right)\)
6: \(4x^2-9y^2-4x+1\)
\(=\left(4x^2-4x+1\right)-9y^2\)
\(=\left(2x-1\right)^2-\left(3y\right)^2\)
\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)
8: \(x^2y-xy^2-2x+2y\)
\(=xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-2\right)\)
9: \(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
\(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3x^2-3y^2-2\left(x^2-2xy+y^2\right)\)
\(=3x^2-3y^2-2x^2+4xy-2y^2\)
\(=x^2+4xy-5y^2\)
\(=x^2+4xy+4y^2-9y^2\)
\(=\left(x+2y\right)^2-\left(3y\right)^2\)
\(=\left(x+2y-3y\right)\left(x+2y+3y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
a) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
= \(\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)+2x\left(x^2+4x+8\right)+2x^2\)
= \(\left(x^2+4x+8\right)\left(x^2+4x+8+x\right)+2x\left(x^2+4x+8+x\right)\)
= \(\left(x^2+6x+8\right)\left(x^2+5x+8\right)\)
= \(\left(x^2+2x+4x+8\right)\left(x^2+5x+8\right)\)
= \(\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)\)
x3+y(1-3x2)+x(3y2-1)-y3
= x3-3x2y+3xy2-y3+y-x
=(x-y)3 -(x-y)
=(x-y)(x2-2xy+y2-1)
cái chỗ kia giải thích dùm mìh đy : \(x^3-3x^2y+3xy^2-y^3+y-x\)
\(x^3+y\left(1-3x^2\right)+x\left(3y^2-1\right)-y^3\)
\(=x^3-3x^2y+3xy^2-y^3+y-x\)
\(=\left(x-y\right)^3-\left(x-y\right)\)
phân tích đa thức thành nhân tử cơ mà
=(x-y)3-(x-y)
=(x-y)[(x-y)2-1]
A/ \(16x-5x^2-3=\left(15x-3\right)-\left(5x^2-x\right)=3\left(5x-1\right)-x\left(5x-1\right)=\left(5x-1\right)\left(3-x\right)\)
B/ \(x^3-3x^2+1-3x=\left(x^3-4x^2+x\right)+\left(x^2-4x+1\right)=x\left(x^2-4x+1\right)+\left(x^2-4x+1\right)\)
\(=\left(x+1\right)\left(x^2-4x+1\right)\)
C/ \(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
D/ \(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=3x\left(x+2\right)\)
\(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3x^2-3y^2-2\left(x^2-2xy+y^2\right)\)
\(=3x^2-3y^2-2x^2+4xy-2y^2\)
\(=x^2+4xy-5y^2\)
\(=x^2+4xy+4y^2-9y^2\)
\(=\left(x+2y\right)^2-\left(3y\right)^2\)
\(=\left(x+2y-3y\right)\left(x+2y+3y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)