tìm x,y nguyên dương thỏa mãn
\(\frac{x+y}{x^2+y^2}=\frac{11}{65}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có phương trình \(\frac{x}{7}+\frac{y}{11}+\frac{z}{13}=\frac{946053}{99999}\)
\(\Leftrightarrow\frac{143x+91y+77z}{1001}=\frac{947}{1001}\)
\(\Leftrightarrow143x+91y+77z=947\)(1)
\(\Leftrightarrow7\left(13y+11z\right)=947-143x\)
Dễ thấy \(VT⋮7\Rightarrow947-143x⋮7\)
Mà y,z nguyên dương nên VT > 0 do đó \(947-143x>0\Leftrightarrow x\le6\)
+) x = 1 thì \(947-143.1=804\)không chia hết cho 7
+) x = 2 thì \(947-143.2=661\)không chia hết cho 7
+) x = 3 thì \(947-143.3=518\) chia hết cho 7 (tm)
+) x = 4 thì \(947-143.4=375\)không chia hết cho 7
+) x = 5 thì \(947-143.5=232\)không chia hết cho 7
+) x = 6 thì \(947-143.5=89\)không chia hết cho 7
Sau khi xét ta tìm được x = 3
Thay x = 3 vào phương trình (1), ta được \(13y+11z=74\)
\(\Leftrightarrow11z=74-13y\)
Vì z nguyên dương nên VT > 0 nên 74 - 13y > 0 và \(74-13y⋮11\)
\(\Rightarrow y< 6\)
+) y = 1 thì 74 - 13y = 61 không chia hết cho 11
+) y = 2 thì 74 - 13y = 48 không chia hết cho 11
+) y = 3 thì 74 - 13y = 35 không chia hết cho 11
+) y = 4 thì 74 - 13y = 22 chia hết cho 11 (tm)
+) y = 5 thì 74 - 13y = 9 không chia hết cho 11
Tóm lại, y = 4
Khi đó 11z = 22 nên z = 2
Vậy tìm được bộ ba số (x;y;z) thỏa mãn là (3;4;2)
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị