Cho biểu thức: A=\(\dfrac{3}{\sqrt{a}+1}-\dfrac{1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-3}{a-1}\)với a\(\ge\)0 và a\(\ne\)1
a.Rút gọn biểu thức A
b.Tính giá trị biểu thức A khi a=3-\(2\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x-1}\right)^2}\)
\(=\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1}{x-1}\)
\(=\dfrac{\sqrt{x}-1+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)
b) Để \(A=\dfrac{1}{3}\) thì \(\dfrac{2\sqrt{x}}{\sqrt{x}+1}=\dfrac{1}{3}\)
\(\Leftrightarrow\sqrt{x}+1=6\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}+1-6\sqrt{x}=0\)
\(\Leftrightarrow-5\sqrt{x}+1=0\)
\(\Leftrightarrow-5\sqrt{x}=-1\)
\(\Leftrightarrow\sqrt{x}=\dfrac{1}{5}\)
hay \(x=\dfrac{1}{25}\)(nhận)
Vậy: Để \(A=\dfrac{1}{3}\) thì \(x=\dfrac{1}{25}\)
a) Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\dfrac{x-1}{\sqrt{x}}\)
b) Ta có: \(x=4+2\sqrt{3}\)
\(\Leftrightarrow x=3+2\cdot\sqrt{3}\cdot1+1\)
hay \(x=\left(\sqrt{3}+1\right)^2\)
Thay \(x=\left(\sqrt{3}+1\right)^2\) vào biểu thức \(A=\dfrac{x-1}{\sqrt{x}}\), ta được:
\(A=\dfrac{\left(\sqrt{3}+1\right)^2-1}{\sqrt{\left(\sqrt{3}+1\right)^2}}=\dfrac{4+2\sqrt{3}-1}{\sqrt{3}+1}\)
\(\Leftrightarrow A=\dfrac{\left(3+2\sqrt{3}\right)\left(\sqrt{3}-1\right)}{2}=\dfrac{3\sqrt{3}-3+6-2\sqrt{3}}{2}\)
\(\Leftrightarrow A=\dfrac{\sqrt{3}+3}{2}\)
Vậy: Khi \(x=4+2\sqrt{3}\) thì \(A=\dfrac{\sqrt{3}+3}{2}\)
a) \(H=\left(\dfrac{a-3\sqrt{a}}{a-2\sqrt{a}-3}-\dfrac{2a}{a-1}\right):\dfrac{1-\sqrt{a}}{a-2\sqrt{a}+1}\)
\(H=\left[\dfrac{\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+1\right)}-\dfrac{2a}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right]:\dfrac{1-\sqrt{a}}{\left(\sqrt{a}-1\right)^2}\)
\(H=\left[\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\dfrac{2a}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right]:\dfrac{-\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)^2}\)
\(H=\dfrac{a-\sqrt{a}-2a}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}:\dfrac{-1}{\sqrt{a}-1}\)
\(H=\dfrac{-a-\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\cdot-\left(\sqrt{a}-1\right)\)
\(H=\dfrac{-\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot-\left(\sqrt{a}-1\right)\)
\(H=\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\)
\(H=\sqrt{a}\)
b) Thay x = 2023 vào ta có:
\(H=\sqrt{2023}\)
a, Để A nhận giá trị dương thì \(A>0\)hay \(x-1>0\Leftrightarrow x>1\)
b, \(B=2\sqrt{2^2.5}-3\sqrt{3^2.5}+4\sqrt{4^2.5}\)
\(=4\sqrt{5}-9\sqrt{5}+16\sqrt{5}=\left(4-9+16\right)\sqrt{5}=11\sqrt{5}\)
( theo công thức \(A\sqrt{B}=\sqrt{A^2B}\))
c, Với \(a\ge0;a\ne1\)
\(C=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)
\(=\left(\sqrt{a}+1\right)^2.\frac{1}{\left(\sqrt{a}+1\right)^2}=1\)
Lời giải:
a.
\(A=\frac{\sqrt{a}(a\sqrt{a}+1)}{a-\sqrt{a}+1}-\frac{\sqrt{a}(2\sqrt{a}+1)}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}(\sqrt{a}+1)(a-\sqrt{a}+1)}{a-\sqrt{a}+1}-(2\sqrt{a}+1)+1\)
\(=\sqrt{a}(\sqrt{a}+1)-(2\sqrt{a}+1)+1=a-\sqrt{a}\)
b.
$A=a-\sqrt{a}=(\sqrt{a}-0,5)^2-0,25\geq -0,25$ với mọi $a>0$
Vậy $A_{\min}=-0,25$ khi $\sqrt{a}-0,5=0$
$\Leftrightarrow a=0,25$
cho mình hỏi làm sao để tách\(a\sqrt{a}+1=\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)\)
a: Ta có: \(P=\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right)\cdot\dfrac{\sqrt{a}-1}{a^2}\)
\(=\dfrac{4a-1}{\sqrt{a}-1}\cdot\dfrac{\sqrt{a}-1}{a^2}\)
\(=\dfrac{4a-1}{a^2}\)
b: Để P=3 thì \(4a-1=3a^2\)
\(\Leftrightarrow3a^2-4a+1=0\)
\(\Leftrightarrow\left(3a-1\right)\left(a-1\right)=0\)
hay \(a=\dfrac{1}{9}\)
a) ĐK: a>0; a≠1
Ta có: \(P=\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right).\dfrac{\sqrt{a}-1}{a^2}\)
\(=\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}-1}\right).\dfrac{\sqrt{a}-1}{a^2}\)
\(=\dfrac{4a-1}{\sqrt{a}-1}.\dfrac{\sqrt{a}-1}{a^2}=\dfrac{4a-1}{a^2}\)
b) Ta có: \(P=3\Leftrightarrow\dfrac{4a-1}{a^2}=3\Leftrightarrow3a^2=4a-1\Leftrightarrow3a^2-4a+1=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\left(loại\right)\\a=\dfrac{1}{3}\left(tm\right)\end{matrix}\right.\)
\(a,A=\dfrac{2\cdot2-4}{2-1}=0\\ b,B=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ B=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ c,AB=\dfrac{2\sqrt{x}-4}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{2\sqrt{x}-4}{\sqrt{x}+1}=\dfrac{5\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+3\right)}{\sqrt{x}+1}\\ AB=5-\dfrac{3\left(\sqrt{x}+3\right)}{\sqrt{x}+1}\)
Vì \(\dfrac{3\left(\sqrt{x}+3\right)}{\sqrt{x}+1}>0\) nên \(AB< 5\)
a. \(x=4\Rightarrow A=\dfrac{2.\sqrt{4}-4}{\sqrt{4}-1}=0\)
b. \(\Rightarrow B=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-\left(6\sqrt{x}-4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow B=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow B=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow B=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow B=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
1) Sửa đề: x=0,09
Thay x=0,09 vào A, ta được:
\(A=\dfrac{\sqrt{0.09}}{\sqrt{0.09}-1}=\dfrac{0.3}{0.3-1}=\dfrac{0.3}{-0.7}=\dfrac{-3}{7}\)
a) \(A=\dfrac{3\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\dfrac{\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\dfrac{3\sqrt{a}-3-\sqrt{a}-1-\sqrt{a}+3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{1}{\sqrt{a}+1}\)
b) Với \(a=3-2\sqrt{2}\)(tmđk)
\(A=\dfrac{1}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{\sqrt{a}-1}{a-1}\)
\(=\dfrac{\sqrt{3-2\sqrt{2}}-1}{3-2\sqrt{2}-1}=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}-1}{2-2\sqrt{2}}=\dfrac{\left|\sqrt{2}-1\right|-1}{2-2\sqrt{2}}=\dfrac{\sqrt{2}-1-1}{2-2\sqrt{2}}=\dfrac{\sqrt{2}-2}{2-2\sqrt{2}}=\dfrac{\sqrt{2}\left(1-\sqrt{2}\right)}{2\left(1-\sqrt{2}\right)}=\dfrac{\sqrt{2}}{2}\)