Tổng số học sinh khối lớp 6 của một trường có khoảng từ 235 đến 250m em, khi chia cho 3 thì dư 2 , chia cho 4 thì dư 3 , chia cho 5 thì dư 4, chia cho 6 thì dư 5, chia cho 10 thì dư 9. Tìm số học sinh khối 6?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là số học sinh của khối 6
a chia cho 3 dư 2
\(\Rightarrow\left(a+1\right)⋮3\)
a chia cho 4 dư 3
\(\Rightarrow\left(a+1\right)⋮4\)
a chia cho 5 dư 4
\(\Rightarrow\left(a+1\right)⋮5\)
a chia cho 6 dư 5
\(\Rightarrow\left(a+1\right)⋮6\)
a chia cho 10 dư 9
\(\Rightarrow\left(a+1\right)⋮10\)
\(\Rightarrow\left(a+1\right)\in BC\left(3;4;5;6;10\right)\)và \(236\le a+1\le251\)
3 = 3
4 = 22
5 = 5
6 = 23
10 = 2 . 5
BCNN(3;4;5;6;10) = 23.3.5 = 120
BC(3;4;5;6;10) = B(120) = {0;120;240;360;...}
Vì \(236\le a+1\le251\)
\(\Rightarrow a+1=240\)
\(a=239\)
Vậy số học sinh của khối 6 là 239 học sinh
Gọi số học sinh của trường là a, a thuộc N*, 235 ≤ a ≤ 250. Ta có :
a chia 3 dư 2 => a + 1 chia hết cho 3.
a chia 4 dư 3 => a + 1 chia hết cho 4.
a chia 5 dư 4 => a + 1 chia hết cho 5.
a chia 6 dư 5 => a + 1 chia hết cho 6.
a chia 10 dư 9 => a + 1 chia hết cho 10.
Từ tất cả những điều trên => a + 1 thuộc BC(3 ; 4 ; 5 ; 6 ; 10).
=> a + 1 thuộc {60 ; 120 ; 180 ; 240 ; 300 ; ...}
=> a thuộc {59 ; 119 ; 179 ; 239 ; 299 ; ...}
Mà 235 ≤ a ≤ 250 => a = 239.
Vậy trường có 239 học sinh khối 6.
Gọi số học sinh của trường là a, a thuộc N*, 235 ≤ a ≤ 250. Ta có :
a chia 3 dư 2 => a + 1 chia hết cho 3.
a chia 4 dư 3 => a + 1 chia hết cho 4.
a chia 5 dư 4 => a + 1 chia hết cho 5.
a chia 6 dư 5 => a + 1 chia hết cho 6.
a chia 10 dư 9 => a + 1 chia hết cho 10.
Từ tất cả những điều trên => a + 1 thuộc BC(3 ; 4 ; 5 ; 6 ; 10).
=> a + 1 thuộc {60 ; 120 ; 180 ; 240 ; 300 ; ...}
=> a thuộc {59 ; 119 ; 179 ; 239 ; 299 ; ...}
Mà 235 ≤ a ≤ 250 => a = 239.
Vậy trường có 239 học sinh khối 6.
^^ Hơi dài bạn nhé
~ Chúc Bạn Hok tốt ~
Gọi số học sinh khối 6 của trường là a,( a ∈ N*, 235 ≤ a ≤ 250.)
Ta có :
a chia 3 dư 2 => a + 1 chia hết cho 3.
a chia 4 dư 3 => a + 1 chia hết cho 4.
a chia 5 dư 4 => a + 1 chia hết cho 5.
a chia 6 dư 5 => a + 1 chia hết cho 6.
a chia 10 dư 9 => a + 1 chia hết cho 10.
Từ tất cả những điều trên => a + 1 thuộc BC(3 ; 4 ; 5 ; 6 ; 10).
=> a + 1 ∈ {60 ; 120 ; 180 ; 240 ; 300 ; ...}
=> a ∈ {59 ; 119 ; 179 ; 239 ; 299 ; ...}
Mà 235 ≤ a ≤ 250 => a = 239.
Vậy trường có 239 học sinh khối 6
Lời giải:
Gọi tổng số học sinh khối 7 là $a$ (em).
Theo bài ra ta có: $a-2\vdots 3; a-3\vdots 4; a-4\vdots 5; a-5\vdots 6, a-9\vdots 10$
$\Rightarrow a+1\vdots 3,4,5,6,10$
$\Rightarrow a+1 =BC(3,4,5,6,10)$
$\Rightarrow a+1\vdots BCNN(3,4,5,6,10)$
$\Rightarrow a+1\vdots 60$
$\Rightarrow a+1\in\left\{0; 60; 120; 180; 240; 300;...\right\}$
Mà $a$ trong khoảng từ 235 đến 250 nên $a=240$ (em)
Gọi số học sinh khối 7 là: a
Theo đề bài,
-biết số học sinh chia cho 3 dư 2
=>(a+1)\(⋮\)3
-a chia 4 dư 3
=>(a+1)\(⋮4\)
-a chia cho 5 dư 4
=>(a+1)\(⋮5\)
-a chia cho 6 dư 5
=>(a+1)\(⋮6\)
-a chia 10 dư 9
=>(a+1)\(⋮10\)
Từ đó =>(a+1)\(\in BC\left(3;4;5;6;10\right)\) (và \(236\le a+1\le251\))
BCNN(3;4;5;6;10)=23.3.5=120
<=> BCNN(3;4;5;6;10)=B(120)={0;120;240;360;480;...}
Mà \(236\le a+1\le251\)
=>a+1=240
=>a=240-1
=>a=239
Vậy số học sinh khối 7 ngôi trường đó là 239
aứad ứad ứad
:DDDDDDDDD