Cho tam giác ABC vuông tại A. Dựng ra phía ngoài tam giác ABC các tam
giác đều ABE và ACF. Gọi G là trực tâm của tam giác ABE, M là trung điểm
BC. Chứng minh rằng
góc GMF = 90 dộ và tính các góc còn lại của tam giác GMF.
Giups minh voiz :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LẤY I LÀ TRUNG ĐIỂM CỦA BC, O LÀ TRUNG ĐIỂM CỦA AC
XÉT TAM GIÁC MAN VÀ TAM GIÁC IOF CÓ
OI = AB/2=AE/2=AM
OF=AN ( CÚNG LÀ ĐƯƠNG CAO CỦA TAM GIÁC ĐỀU)
GÓC FOI = GÓC MAN = 90 + GÓC A
=> TAM GIÁC MAN = TAM GIACC IOF ( C.G.C)
=> FI = DM
=> GÓC OFI = GÓC MNA
=> GÓC MND = GÓC ANC - GÓC MNA - GÓC DNC
= 90 - GÓC OFI - GÓC IFC
= 90 - 30 = 60
LẠI CÓ FI = ND/2
FI = MD
=> MD = ND/2
MÀ GÓC MND = 60
-> TAM GIÁC MND LÀ NỬ TAM GIÁC ĐỀU
=> DM VUÔNG GÓC DN
Trên nửa mặt phẳng bờ là NF, dựng tam giác đều NFG. Nối G với A và H.
Ta có: ^CFN + ^AFN = 600; ^AFG + ^AFN = 600 => ^CFN = ^AFG.
Xét \(\Delta\)NFC và \(\Delta\)GFA có: FC=FA; ^CFN=^AFG; FN=FG => \(\Delta\)NFC = \(\Delta\)GFA (c.g.c)
=> CN=AG (2 cạnh tương ứng) . Mà CN=BN nên BN=AG.
Lại có: \(\Delta\)ABE là tam giác đều với trực tâm H => ^ABH=300
=> ^HBN = ^ABC + ^ABH = ^ABC +300 (1)
^HAG = 3600 - (^FAG + ^FAC + ^BAC + ^HAB) (*)
Do \(\Delta\)NFC=\(\Delta\)GFA => ^FAG = ^FCN (2 góc tương ứng) => ^FAG = ^ACB +600
Dễ thấy: \(\Delta\)ACF đều => ^FAC = 600; \(\Delta\)ABE đều, trực tâm H => ^HAB = ^ABH = 300
Thay hết vào (*), ta được: ^HAG = 3600 - (^ACB + 600 + 600 + ^BAC + 300)
=> ^HAG = 2100 - (^BAC + ^ACB) = 1800 - (^BAC + ^ACB) +300 = ^ABC + 300
=> ^HAG = ^ABC + 300 (2)
Từ (1) và (2) => ^HBN = ^HAG.
Xét \(\Delta\)BHN và \(\Delta\)AHG có: BH=AH (Dễ c/m); ^HBN = ^HAG; BN=AG (cmt)
=> \(\Delta\)BHN=\(\Delta\)AHG (c.g.c) => HN=HG (2 cạnh tương ứng).
Xét \(\Delta\)HNF và \(\Delta\)HGF: GN=HG; FN=FG; HF chung => \(\Delta\)HNF=\(\Delta\)HGF (c.c.c)
=> ^HFG = ^HFN = ^GFN/2 = 600/2 = 300; ^NHF = ^GHF
\(\Delta\)BHN=\(\Delta\)AHG => ^BHN = ^AHG . Mà ^BHN + ^NHA = ^BHA = 1200
=> ^AHG + ^NHA = ^NHG = 1200 => ^NHF = ^GHF = ^NHG/2 = 600
Vậy \(\Delta\)FNH có: ^HFN = 300; ^NHF = 600 => ^FNH = 900.
Còn 1 cách khác ở trong sách Nâng cao phát triển Toán 7 - T2 nhé!
Mình nghĩ thêm cách này để bạn tham khảo ^-^
Cho cái link này không bít có đúng không:
https://cunghoctot.vn/forum/topic/1003161
Chia ra 3 trường hợp .....
a) AE//MC,ME//AC=>AEMC là hình bình hành
=>ME=AC
CM tương tự có ADMB là hình bình hành=>AB=MD
gọi P,Q lần lượt là giao của ABvới ME và AC với MD
Có AP//MQ,AQ//MP=>APMQ là hình bình hành=>góc BAC=góc DME
Chứng minh được tam giác ABC=tam giác MDE(c.g.c)
b)AEMC,ADMB là hình bình hành=>AM cắt CE tại trung điểm của mỗi đường,AM cắt BD tại trung điểm của mỗi đường
=>AM,BD,CE đồng quy(đpcm)
Bài 1:
a)Có góc EAC=90 độ+góc BAC=góc FAB
tam giác EAC=tam giác BAF do EA=AB(tam giác AEB vuông cân tại A)
AF=AC(tam giác AFC vuông cân tại A),góc EAB=góc BAF
=>EC=BF(đpcm)
b)Trên tia đối tia MA,lấy điểm N sao cho M là trung điểm của AN
=>AM=AN/2
Có M là trung điểm của BC=>ABNC là hình bình hành
=>NC=AB=AE,BN=AC=AF,góc BAC+góc ACN=180 độ(AB//NC)
Mà góc EAF+góc BAC=180 độ
=>góc EAF=góc ACN
tam giác EAF=tam giác NCA(do EA=NC,AF=CA,góc EAF=góc NCA)
=>góc NAC=góc EFA và AN=EF
Mà AM=AN/2=>AM=EF/2
Gọi H là giao của AM và EF
Có góc NAC+góc HAF=90.Mà góc NAC=góc EFA
=>góc HAF+góc HFA=90 độ=>góc AHF =90 độ
=>AM vuông góc với EF tại H
ΔABC vuông tại A có AM là trung tuyến
nên MA=MB=MC
AE=EB
AM=BM
=>EM là trung trực của AB
=>EM vuông góc AB
=>EM//AC
MA=MC
FA=FC
=>MF là trung trực của AC
=>MF vuông góc AC
+>ME vuông góc MF
=>góc GMF=90 độ
Gọi D,K lần lượt là trung điểm của AB,AC
=>DM=AC/2; MK=AB/2
GD=1/3ED=1/3*AB*căn 3/2=AB*căn 3/6
KF=AC*căn 3/2
GM=căn 3/6AB+1/2AC
MF=căn 3/2*AC+1/2*AB
=>GN=căn 3/3(AB/2+căn 3/2*AC)
=MF*căn 3/3
=>MF=căn 3*GM
=>góc GFM=30 độ
=>góc MGF=60 độ