K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2022

\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+2\right)\)

   \(=4m^2+8m+4-4m^2-8\)

   \(=8m-4\)

Để pt có 2 nghiệm thì \(\Delta>0\)

                                    \(\Leftrightarrow8m-4>0\)

                                      \(\Leftrightarrow m>\dfrac{1}{2}\)

Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)

\(x_1^2+x_1x_2+2=3x_1+x_2\)

\(\Leftrightarrow x_1^2+m^2+2+2=2x_1+2\left(m+1\right)\)

\(\Leftrightarrow x_1^2-2x_1+4+m^2-2m-2=0\)

\(\Leftrightarrow x_1^2-2x_1+2+m^2-2m=0\)

\(\Leftrightarrow x_1^2-2x_1+1+m^2-2m+1=0\)

\(\Leftrightarrow\left(x_1-1\right)^2+\left(m-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=1\\m=1\end{matrix}\right.\)(tm)

Vậy \(m=1\)

 

15 tháng 5 2022

sai rồi bạn ơi

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)

 

16 tháng 2 2021

a, Ta có : \(mx^3-x^2+2x-8m=0\)

\(\Leftrightarrow m\left(x^3-8\right)-\left(x^2-2x\right)=0\)

\(\Leftrightarrow m\left(x-2\right)\left(x^2+2x+4\right)-x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(mx^2+2mx+4m-x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(mx^2+x\left(2m-1\right)+4m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\mx^2+x\left(2m-1\right)+4m=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\mx^2+x\left(2m-1\right)+4m=0\left(I\right)\end{matrix}\right.\)

- Để phương trình ban đầu có 3 nghiệm phân biệt lớn hơn 1

<=> Phương trình ( I ) có 2 nghiệm phân biệt lớn hơn 1 .

- Xét phương trình ( I ) có : \(\Delta=b^2-4ac=\left(2m-1\right)^2-4m.4m\)

\(=4m^2-4m+1-16m^2=-12m^2-4m+1\)

- Để phương trình ( I ) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow-\dfrac{1}{2}< m< \dfrac{1}{6}\) ( * )

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{m}\\x_1x_2=4\end{matrix}\right.\)

- Để phương trình ( I ) có nghiệm lớn hơn 1 \(\Leftrightarrow\left\{{}\begin{matrix}x_1-1+x_2-1>0\\\left(x_1-1\right)\left(x_2-1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\5-\dfrac{1-2m}{m}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\\dfrac{7m-1}{m}>0\end{matrix}\right.\)

- Lập bảng xét dấu ( đoạn này làm tắt tí nha :vv )

Từ bảng xét dấu ta được : \(\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>\dfrac{1}{7}\end{matrix}\right.\\0< m< \dfrac{1}{4}\end{matrix}\right.\)

- Kết hợp điều kiện ( * ) ta được :\(\dfrac{1}{7}< m< \dfrac{1}{6}\)

Vậy ...

 

 

 

 

16 tháng 2 2021

b, - Xét phương trình trên có : \(\Delta^,=b^{,2}-ac=\left(m-2\right)^2-\left(m-1\right)\left(m-3\right)\)

\(=m^2-4m+4-m^2+m+3m-3=1>0\)

Nên phương trình có 2 nghiệm phân biệt .

Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m-1}\\x_1x_2=\dfrac{m-3}{m-1}\end{matrix}\right.\)

- Để \(x_1+x_2+x_1x_2< 1\)

\(\Leftrightarrow\dfrac{2\left(m-2\right)+\left(m-3\right)-\left(m-1\right)}{m-1}< 0\)

\(\Leftrightarrow\dfrac{2m-6}{m-1}< 0\)

- Đặt \(\dfrac{2m-6}{m-1}=f\left(m\right)\)

Cho f(m) = 0 => m = 3

m-1 = 0 => m = 1

- Lập bảng xét dầu :

m.............................1..........................................3...................................

2m-6............-..........|......................-.....................0...................+.................

m-1..............-............0...................+.....................|....................+.................

f(m).............+...........||..................-........................0................+....................

- Từ bảng xét dầu ta được : Để \(f\left(m\right)< 0\)

\(\Leftrightarrow1< m< 3\)

Vậy ...

 

NV
11 tháng 4 2022

\(ac=-2< 0\Rightarrow\) phương trình luôn có 2 nghiệm pb trái dấu

Mà \(x_1>x_2\Rightarrow\left\{{}\begin{matrix}x_2< 0\\x_1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x_1\right|=x_1\\\left|x_2\right|=-x_2\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2\end{matrix}\right.\)

\(\left|2x_1\right|-\left|x_2\right|=2+x_1\)

\(\Leftrightarrow2x_1+x_2=2+x_1\)

\(\Leftrightarrow x_1+x_2=2\)

\(\Leftrightarrow m-1=2\)

\(\Rightarrow m=3\)

28 tháng 2 2021

PT có 2 nghiệm pb

`<=>Delta'>0`

`<=>(m+1)^2-2m>0`

`<=>m^2+2m+1-2m>0`

`<=>m^2+1>0` luôn đúng.

`a,\sqrt{\Delta}=\sqrt{m^2+1}`

`=>x_1=(2m+2+\sqrt{m^2+1})/(2m)`

`=>-3x_1=(-6m-6-3\sqrt{m^2+1})/(2m)`

`=>x_1=(2m+2-\sqrt{m^2+1})/(2m)`

`=>-2x_1=(\sqrt{m^2+1}-m-1)/m`

b,Áp dụng vi-ét

`=>x_1+x_2=(2m+2)/m,x_1.x_2=2/m`

PT có các nghiệm thì bạn phải ghi rõ đề chứ?

28 tháng 2 2021

PT có 2 nghiệm pb

`<=>Delta>0`

`<=>4(m+1)^2-8m>0`

`<=>4m^2+8m+4-8m>0`

`<=>4m^2+4>0` luôn đúng.

`a,\sqrt{\Delta}=2\sqrt{m^2+1}`

`=>x_1=(2m+2+2\sqrt{m^2+1})/(2m)=(m+1+\sqrt{m^2+1})/,`

`=>-3x_1=(-3m-3-3\sqrt{m^2+1})/(m)`

`=>x_2=(2m+2-2\sqrt{m^2+1})/(2m)=(m+1-\sqrt{m^2+1})/m`

`=>-2x_2=(2\sqrt{m^2+1}-2m-2)/m`

b,Áp dụng vi-ét

`=>x_1+x_2=(2m+2)/m,x_1.x_2=2/m`

PT có các nghiệm thì bạn phải ghi rõ đề chứ?

26 tháng 5 2021

\(f\left(x\right)=x^2-2\left(m+5\right)x+m^2+4m-3=0\)

Phương trình cho có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow6m+28>0\Leftrightarrow m>-\frac{14}{3}\left(1\right)\)

ycbt\(\Leftrightarrow\hept{\begin{cases}-2< m+5< 4\\f\left(-2\right)>0\\f\left(4\right)>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-7< m< -1\\m^2+8m+21>0\\m^2-4m-27>0\end{cases}}\Leftrightarrow-7< m< 2-\sqrt{31}\left(2\right)\)

Từ (1),(2) suy ra \(-\frac{14}{3}< m< 2-\sqrt{31}.\)

NV
11 tháng 9 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)

\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)

NV
30 tháng 12 2020

\(\Delta=\left(m-1\right)^2-4\left(m+3\right)=m^2-6m-11>0\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=m+3\end{matrix}\right.\)

Ta có:

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m-1\right)^2-2\left(m+3\right)=m^2-4m-5\)

Biểu thức này ko tồn tại cả min lẫn max với điều kiện m từ (1)