cho
M= (x+y+z)^3 + (x-y-z)^3
N= 6x(y+z)^2 + 2x^3
chứng minh M=N
giúp mk vs hứa k 3 bn đầu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x(y+z) - y(x-z)=xy+xz-xy +yz=xz+yz=z(z+y)
(m-n)(m+n)=m^2 -mn + mn -n^2 = m^2 - n^2
Có \(xy+yz+zx=xyz\)\(\Leftrightarrow\)\(\frac{xy+yz+zx}{xyz}=1\)\(\Leftrightarrow\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
\(\frac{x^2y}{y+2x}+\frac{y^2z}{z+2y}+\frac{z^2x}{x+2z}=\frac{1}{\frac{1}{x^2}+\frac{2}{xy}}+\frac{1}{\frac{1}{y^2}+\frac{2}{yz}}+\frac{1}{\frac{1}{z^2}+\frac{2}{zx}}\ge\frac{9}{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}\)
\(=\frac{9}{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}=\frac{9}{1^2}=9\)
Dấu "=" ko xảy ra \(\Rightarrow\)\(\frac{x^2y}{y+2x}+\frac{y^2z}{z+2y}+\frac{z^2x}{x+2z}>9\)
Bài 3:
\(\left\{{}\begin{matrix}x+y>=2\sqrt{xy}\\y+z>=2\sqrt{yz}\\x+z>=2\sqrt{xz}\end{matrix}\right.\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)>=8xyz\)
Dấu = xảy ra khi x=y=z
Đặt \(y+z=p\)
Khi đó \(M=\left(x+p\right)^3+\left(x-p\right)^3\)\(=x^3+3x^2p+3xp^2+p^3+x^3-3x^2p+3xp^2-p^3\)\(=2x^3+6xp^2=2x^3+6x\left(y+z\right)^2=N\) (vì \(y+z=p\))
Từ đó ta có đpcm.