Cho phương trình x2 - (2m+5)x +2m + 1 = 0 với m là tham số có 2 nghiệm dương phân biệt x1,x2 . Tìm m thỏa mãn ∣∣√x1−√x2∣∣|x1−x2| có giá trị nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình 1 có 2 nghiệm phân biệt
=> \(\Delta,>0\) <=> \(\left[-\left(m-1\right)\right]^2-\left(-2m+5\right)>0\)
<=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)
=> Theo hệ thức Vi ét ta có
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\circledast\\x_1.x_2=-2m+5\circledast\circledast\end{matrix}\right.\)
Theo bài ra ta có
\(x_1-x_2=-2\circledcirc\)
Từ \(\circledast vaf\circledcirc\) ta có hệ pt
\(\left\{{}\begin{matrix}x1+x2=2m-2\\x1-x2=-2\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x1=m-2\\x2=m\end{matrix}\right.\)
Thay x1 và x2 vào \(\circledast\circledast\)ta dc
\(\left(m-2\right)m=-2m+5\)
<=> m=\(\left[{}\begin{matrix}-\sqrt{5}\\\sqrt{5}\end{matrix}\right.\left(tm\right)\)
Vậy ...
a. + Với m = − 1 2 phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .
+ Vậy khi m = − 1 2 phương trình có hai nghiệm x= 0 và x= 4.
b. + Phương trình có hai nghiệm dương phân biệt khi
Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0
+ Ta có Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R
+ Giải được điều kiện m > − 1 2 (*).
+ Do P>0 nên P đạt nhỏ nhất khi P 2 nhỏ nhất.
+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3 ( ∀ m > − 1 2 ) ⇒ P ≥ 3 ( ∀ m > − 1 2 ) .
và P = 3 khi m= 0 (thoả mãn (*)).
+ Vậy giá trị nhỏ nhất P = 3 khi m= 0.
b: Δ=(-2m)^2-4(m^2-2m+2)
=4m^2-4m^2+8m-8=8m-8
Để pt có 2 nghiệm phân biệt thì 8m-8>0
=>m>1
x1^2+x2^2=x1+x2+8
=>(x1+x2)^2-2x1x2-(x1+x2)=8
=>(2m)^2-2(m^2-2m+2)-2m=8
=>4m^2-2m^2+4m-4-2m=8
=>2m^2+2m-12=0
=>m^2+m-6=0
=>(m+3)(m-2)=0
mà m>1
nên m=2
Δ=(-2)^2-4(m-1)
=-4m+4+4
=-4m+8
Để phương trình có hai nghiệm phân biệt thì -4m+8>0
=>-4m>-8
=>m<2
x1^2+x2^2-3x1x2=2m^2+|m-3|
=>2m^2+|m-3|=(x1+x2)^2-5x1x2=2^2-5(m-1)=4-5m+5=-5m+9
TH1: m>=3
=>2m^2+m-3+5m-9=0
=>2m^2+6m-12=0
=>m^2+3m-6=0
=>\(m\in\varnothing\)
TH2: m<3
=>2m^2+3-m+5m-9=0
=>2m^2+4m-6=0
=>m^2+2m-3=0
=>(m+3)(m-1)=0
=>m=1 hoặc m=-3
Đáp án A
Ghi nhớ: Nếu hàm số
liên tục trên đoạn và thì phương trình
có ít nhất một nghiệm nằm trong khoảng .
\(x^2-\left(2m+1\right)x+m^2+1=0\)
\(\Delta=b^2-4ac=\left[-\left(2m+1\right)\right]^2-4\left(m^2+1\right)\)
\(=\left(4m^2+4m+1\right)-4m^2-4\)
\(=4m-3\)
Để pt có 2 nghiệm phân biệt \(x_1,x_2\) thì \(\Delta>0\Leftrightarrow4m-3>0\Leftrightarrow4m>3\Leftrightarrow m>\dfrac{3}{4}\)
Theo Vi ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+1\\x_1x_2=\dfrac{c}{a}=m^2+1\end{matrix}\right.\)
Ta có : \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=13\)
\(\Leftrightarrow x_1^2+2x_1+1+x_2^2+2x_2+1=13\)
\(\Leftrightarrow\left(x_1^2+x_1^2\right)+\left(2x_1+2x_2\right)+2=13\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)-11=0\)
\(\Leftrightarrow\left(2m+1\right)^2-2\left(m^2+1\right)+2\left(2m+1\right)-11=0\)
\(\Leftrightarrow4m^2+4m+1-2m^2-2+4m+2-11=0\)
\(\Leftrightarrow2m^2+8m-10=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\left(tm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)
Vậy m = 1 thì thỏa mãn đề bài.
∆ = [-(2m + 1)]² - 4.1.(m² + 1)
= 4m² + 4m + 1 - 4m² - 4
= 4m - 3
Phương trình có hai nghiệm phân biệt khi ∆ > 0
⇔ 4m - 3 > 0
⇔ m > 3/4
Theo Viét ta có:
x₁ + x₂ = 2m + 1
x₁x₂ = m² + 1
Ta có:
(x₁ + 1)² + (x₂ + 1)² = 13
⇔ x₁² + 2x₁ + 1 + x₂² + 2x₂ + 1 = 13
⇔ (x₁ + x₂)² - 2x₁x₂ + 2(x₁ + x₂) + 2 = 13
⇔ (2m + 1)² - 2(m² + 1) + 2(2m + 1) + 2 = 13
⇔ 4m² + 4m + 1 - 2m² - 2 + 4m + 2 + 2 - 13 = 0
⇔ 2m² + 8m - 10 = 0
Phương trình có hai nghiệm:
m = 1 (nhận)
m = -5 (loại)
Vậy m = 1 thì phương trình có hai nghiệm thỏa mãn (x₁ + 1)² + (x₂ + 1)² = 13
a)PT có 2 nghiệm phân biệt
`<=>Delta>0`
`<=>(2m+3)^2+4(2m+4)>0`
`<=>4m^2+12m+9+8m+16>0`
`<=>4m^2+20m+25>0`
`<=>(2m+5)^2>0`
`<=>m ne -5/2`
b)Áp dụng vi-ét:
$\begin{cases}x_1+x_2=2m+3\\x_1.x_2=-2m-4\\\end{cases}$
`|x_1|+|x_2|=5`
`<=>x_1^2+x_2^2+2|x_1.x_2|=25`
`<=>(x_1+x_2)^2+2(|x_1.x_2|-x_1.x_2)=25`
`<=>(2m+3)^2+2[|-2m-4|-(-2m-4)]=25`
Với `-2m-4>=0<=>m<=-2`
`=>pt<=>(2m+3)^2-25=0`
`<=>(2m-2)(2m+8)=0`
`<=>(m-1)(m+4)=0`
`<=>` $\left[ \begin{array}{l}x=1\\x=-4\end{array} \right.$
`-2m-4<=0=>m>=-2=>|-2m-4|=2m+4`
`<=>4m^2+12m+9+8m+16=25`
`<=>4m^2+20m=0`
`<=>m^2+5m=0`
`<=>` \left[ \begin{array}{l}x=0\\x=-5\end{array} \right.$
Vậy `m in {0,1,-4,-5}`