Cho A = \(\dfrac{1}{x^2+x}+\dfrac{1}{x+1}\) và B = \(\dfrac{2}{x+1}\)
a) Chứng tỏ A = \(\dfrac{1}{x}\)
b) Rút gọn P = A : B
c) Tìm x để P = 3
d) Tìm giá trị nhỏ nhất của biểu thức C = \(2x^2\). P
e) Tìm x để P > \(\dfrac{1}{2}\)
Giúp mình vs :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ne0;x\ne\pm1\)
a) Bạn ghi lại rõ đề.
b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)
c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)
Không tồn tại Min P \(\forall x\inℝ\)
a: \(A=\dfrac{x^2+2-2x\left(x-2\right)+\left(x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{x^2+2-2x^2+4x+x^2-1}{\left(x-2\right)\left(x+1\right)}=\dfrac{4x+1}{\left(x-2\right)\left(x+1\right)}\)
Khi x=5 thì \(A=\dfrac{4\cdot5+1}{\left(5-2\right)\left(5+1\right)}=\dfrac{21}{3\cdot6}=\dfrac{7}{6}\)
b: P=A:B
\(=\dfrac{4x+1}{\left(x-2\right)\left(x+1\right)}\cdot\dfrac{x-2}{1}=\dfrac{4x+1}{x+1}\)
c: P^2=P+2
=>P^2-P-2=0
=>(P-2)(P+1)=0
=>P=2 hoặc P=-1
=>4x+1=2x+2 hoặc 4x+1=-x-1
=>2x=1 hoặc 5x=-2
=>x=-2/5(nhận) hoặc x=1/2(nhận)
\(C=\left(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\right)\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
ĐKXĐ: \(x\ne1\)
\(C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right)]\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
\(\Leftrightarrow C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\right)]\div[\dfrac{(x-1)\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}-\dfrac{(x^2-2)(x-1)}{(x^2+x+1)\left(x-1\right)}]\)
\(\Rightarrow C=\left[2x^2+1-1\left(x^2+x+1\right)\right]\div\left[\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2\right)\right]\)
\(\Rightarrow C=(2x^2+1-x^2-x-1)\div\left[\left(x-1\right)\left(x^2+x+1-x^2+2\right)\right]\)
\(\Rightarrow C=\left(x^2-x\right)\div\left[\left(x-1\right)\left(x+3\right)\right]\)
`a,` Với `x=3`
\(B=\dfrac{x^2-x}{2x+1}\\ \Rightarrow\dfrac{3^2-3}{2\cdot3+1}\\ =\dfrac{9-3}{6+1}\\ =\dfrac{6}{7}\)
`b,` Ta có `M=A*B`
\(M=\left(\dfrac{1}{x-1}+\dfrac{x}{x^2-1}\right)\cdot\dfrac{x^2-x}{2x+1}\\ =\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{x\left(x-1\right)}{2x+\text{ }1}\\ =\left(\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{x\left(x-1\right)}{2x+1}\\ =\dfrac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x\left(x-1\right)}{2x+1}\\ =\dfrac{2x+1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x\left(x-1\right)}{2x+1}\\ =\dfrac{x}{x+1}\)
`c,` Để `M=1/2`
`=> x/(x+1)=1/3`
`<=> (3x)/(3(x+1))= (x+1)/(3(x+1))`
`<=> 3x=x+1`
`<=>3x-x=1`
`<=>2x=1`
`<=>x=1/2`
c) Để P=3 thì \(\dfrac{x+1}{2x}=3\)
\(\Leftrightarrow x+1=6x\)
\(\Leftrightarrow x-6x=-1\)
\(\Leftrightarrow-5x=-1\)
hay \(x=\dfrac{1}{5}\)(thỏa ĐK)
Vậy: Để P=3 thì \(x=\dfrac{1}{5}\)
a) Ta có: \(A=\dfrac{1}{x^2+x}+\dfrac{1}{x+1}\)
\(=\dfrac{1}{x\left(x+1\right)}+\dfrac{x}{x\left(x+1\right)}\)
\(=\dfrac{x+1}{x\left(x+1\right)}=\dfrac{1}{x}\)