phân tích đa thức sau thành nhân tử
\(x^4-25x^2+26x-4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left(3-x+1\right)\left(9+3x-3+x^2-2x+1\right)\\ =\left(4-x\right)\left(x^2+x+7\right)\\ b,=4x^2-4xy-13xy+13y^2\\ =4x\left(x-y\right)-13y\left(x-y\right)\\ =\left(4x-13y\right)\left(x-y\right)\\ c,=4\left(x^2-xy-2y^2\right)\\ =4\left(x^2+xy-2xy-2y^2\right)\\ =4\left(x+y\right)\left(x-2y\right)\\ d,=x^3+4x^2+5x^2+20x+6x+24\\ =\left(x+4\right)\left(x^2+5x+6\right)\\ =\left(x+4\right)\left(x^2+2x+3x+6\right)\\ =\left(x+4\right)\left(x+2\right)\left(x+3\right)\\ f,=x\left(x+4y\right)-3\left(x+4y\right)=\left(x-3\right)\left(x+4y\right)\\ g,=4x^3+4x^2-29x^2-29x-24x-24\\ =\left(x+1\right)\left(4x^2-29x-24\right)\\ =\left(x+1\right)\left(4x^2-32x+3x-24\right)\\ =\left(x+1\right)\left(x-8\right)\left(4x+3\right)\)
\(a,27-\left(x-1\right)^3=\left(3-x+1\right)\left[9+3\left(x-1\right)+\left(x+1\right)^2\right]=\left(4-x\right)\left(9+3x-3+x^2+2x+1\right)=\left(4-x\right)\left(x^2+5x+7\right)\)
\(b,4x^2-17xy+13y^2=\left(4x^2-4xy\right)-\left(13xy-13y^2\right)=4x\left(x-y\right)-13y\left(x-y\right)=\left(x-y\right)\left(4x-13y\right)\)
\(c,4x^2-4xy-8y^2=4\left(x^2-xy-2y^2\right)\)
\(d,x^3+9x^2+26x+24=\left(x^3+2x^2\right)+\left(7x^2+14x\right)+\left(12x+24\right)=\left(x+2\right)\left(x^2+7x+12\right)=\left(x+2\right)\left[\left(x^2+3x\right)+\left(4x+12\right)\right]=\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(f,4xy+x^2-3x-12y=x\left(4y+x\right)-3\left(x+4y\right)=\left(x+4y\right)\left(x-3\right)\)
\(g,4x^3-25x^2-53x-24=\left(4x^3-32x^2\right)+\left(7x^2-56x\right)+\left(3x-24\right)=\left(4x^2+7x+3\right)\left(x-8\right)=\left[\left(4x^2+4x\right)+\left(3x+3\right)\right]=\left(4x+3\right)\left(x+1\right)\left(x-8\right)\)
Lời giải:
a.
$x^4+10x^3+26x^2+10x+1$
$=(x^4+10x^3+25x^2)+x^2+10x+1$
$=(x^2+5x)^2+2(x^2+5x)+1-x^2$
$=(x^2+5x+1)^2-x^2=(x^2+5x+1-x)(x^2+5x+1+x)$
$=(x^2+4x+1)(x^2+6x+1)$
b.
$x^4+x^3-4x^2+x+1$
$=(x^4-x^2)+(x^3-x^2)+(x-x^2)+(1-x^2)$
$=x^2(x-1)(x+1)+x^2(x-1)-x(x-1)-(x-1)(x+1)$
$=(x-1)[x^2(x+1)+x^2-x-(x+1)]$
$=(x-1)(x^3+2x^2-2x-1)$
$=(x-1)[(x^3-1)+(2x^2-2x)]=(x-1)[(x-1)(x^2+x+1)+2x(x-1)]$
$=(x-1)(x-1)(x^2+x+1+2x)=(x-1)^2(x^2+3x+1)$
\(ab\left(x^2+y^2\right)-xy\left(a^2+b^2\right)\)
\(=abx^2+aby^2-a^2xy-b^2xy\)
\(=\left(abx^2-b^2xy\right)-\left(a^2xy-aby^2\right)\)
\(=bx\left(ax-by\right)-ay\left(ax-by\right)\)
\(=\left(ax-by\right)\left(bx-ay\right)\)
\(-25x^2\sqrt{2}+10x+4\sqrt{2}=-\sqrt{2}\left(25x^2-\dfrac{10}{\sqrt{2}}-4\right)=-\sqrt{2}.\left(\left(25x\right)^2-2.5.\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}-\dfrac{5}{2}\right)=-\sqrt{2}\left[\left(5x-\dfrac{1}{\sqrt{2}}\right)^2-\dfrac{5}{2}\right]=-\sqrt{2}.\left(5x-\dfrac{1}{\sqrt{2}}-\dfrac{\sqrt{5}}{\sqrt{2}}\right).\left(5x-\dfrac{1}{\sqrt{2}}+\dfrac{\sqrt{5}}{\sqrt{2}}\right)=-\sqrt{2}.\left(5x-\dfrac{1+\sqrt{5}}{\sqrt{2}}\right)\left(5x-\dfrac{1-\sqrt{5}}{\sqrt{2}}\right)\)
x4-25x2+26x-4
= (x4-25x2)+ (26x-4)
= ((x2)2-(5x)2)+ 2(13x-2)
= (x2-5x)(x2+5x)