Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên BC lấy E sao cho AB = AE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD với FC. CMR:
a) Tam giác ABD = Tam giác EBD và DE vuông góc BC
b) BD là đường trung trực của đoạn thẳng AE
c) Ba điểm D; E; F thẳng hàng
d) Điểm D cách đều ba cạnh của tam giác AEI
b) Ta có: ΔBAD=ΔBED(cmt)
nên DA=DE(hai cạnh tương ứng)
Ta có: BA=BE(gt)
nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DA=DE(cmt)
nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE(Đpcm)
Sửa đề: BA=BE
a) Xét ΔBAD và ΔBED có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔBAD=ΔBED(c-g-c)
Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay DE⊥BC(đpcm)