K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2022

đây là đề học sinh giỏi của tỉnh hải dương năm 2020-2021 ạ

1 tháng 3 2022

a, Ta có SA = SB (tc tiếp tuyến cắt nhau ) 

OA = OB = R

Vậy OS là đường trung trực đoạn AB 

=> SO vuông AB tại H

b, Vì I là trung điểm 

=> OI vuông NS 

Xét tứ giác IHSE ta có ^EHS = ^EIS = 900

mà 2 góc này kề, cùng nhìn cạnh ES

Vậy tứ giác IHSE nt 1 đường tròn 

=> ^ESH = ^HIO ( góc ngoài đỉnh I ) 

Xét tam giác OIH và tam giác OSE có 

^HIO = ^OSE (cmt) 

^O_ chung 

Vậy tam giác OIH ~ tam giác OSE (g.g) 

\(\dfrac{OI}{OS}=\dfrac{OH}{OE}\Rightarrow OI.OE=OH.OS\)

Xét tam giác OAS vuông tại A ( do SA là tiếp tuyến với A là tiếp điểm), đường cao AH ta có 

\(OA^2=OH.OS\)(hệ thức lượng) 

\(\Rightarrow OA^2=R^2=OI.OE\)

Cho đường tròn (O) bán kính R. Từ điểm A nằm bên ngoài đường tròn vẽ hai tiếp tuyến AC, AB (B, C là các tiếp điểm). Kẻ cát tuyến AMN tới đường tròn, gọi D là trung điểm của dây MNa) Chứng minh rằng 5 điểm A, O, B, C, D cùng nằm trên một đường trònb) Cho AC=OC. Hãy chứng minh tứ giác ACOB là hình vuông và tính diện tích đường tròn ngoại tiếp tứ giác ACOB theo R.c) Kẻ ME ⊥ AB (E ∈ AB), MF ⊥ AC (F ∈ AC), MK ⊥ BC (K ∈ BC)....
Đọc tiếp

Cho đường tròn (O) bán kính R. Từ điểm A nằm bên ngoài đường tròn vẽ hai tiếp tuyến AC, AB (B, C là các tiếp điểm). Kẻ cát tuyến AMN tới đường tròn, gọi D là trung điểm của dây MN

a) Chứng minh rằng 5 điểm A, O, B, C, D cùng nằm trên một đường tròn

b) Cho AC=OC. Hãy chứng minh tứ giác ACOB là hình vuông và tính diện tích đường tròn ngoại tiếp tứ giác ACOB theo R.

c) Kẻ ME ⊥ AB (E AB), MF ⊥ AC (F AC), MK ⊥ BC (K BC). Chứng minh góc KME bằng góc KMF

d) Gọi H là giao điểm của MB và KE, I là giao điểm của MC và KF. Chứng minh MK² = ME . MF

e) Chứng minh tứ giác MHKI nội tiếp và HI // BC.

 

Ai đó có thể giúp mình phần d và e không, chứ mình thì chịu với nó rồi. Ngày mai mình phải nộp rồi, các bạn giúp mình với.

 

0

a: Xét ΔOBA vuông tại B có BH là đường cao

nên OH*OA=OB^2=R^2

b: Xét ΔABC và ΔADB có

góc ABC=góc ADB

góc BAC chung

Do đó; ΔABCđồng dạng với ΔADB

=>AB/AD=AC/AB

=>AB^2=AD*AC

=>AD*AC=AH*AO

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)

nên MAOB là tứ giác nội tiếp

b: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

mà OA=OB

nên OM là đường trung trực của AB

\(AM=\sqrt{5^2-3^2}=4\left(cm\right)\)

\(ME=\dfrac{AM^2}{OM}=3,2\left(cm\right)\)

\(AE=\dfrac{AO\cdot AM}{OM}=2,4\left(cm\right)\)

=>AB=4,8(cm)

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)