K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2022

\(A=x^4+y^4-2x^3-2x^2y^2+x^2-2y^3+y^2\)

\(A=\left(x^4-2x^2y^2+y^4\right)-2\left(x^3+y^3\right)+\left(x^2+y^2\right)\)

\(A=\left(x^2-y^2\right)^2-2\left(x^3+y^3\right)+\left(x^2+y^2\right)\)

\(A=\left[\left(x-y\right)\left(x+y\right)\right]^2-2\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x^2+y^2\right)\)

\(A=\left(x-y\right)^2-2\left(x^2-xy+y^2\right)+\left(x^2+y^2\right)\)

\(A=x^2-2xy+y^2-2x^2+2xy-2y^2+x^2+y^2\)

\(A=0\)

11 tháng 10 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

 
15 tháng 2 2020

Sau khi thay thế y = 1 - x. Ta được:

\(P=3x^2-3x+1=\frac{3}{4}\left(2x-1\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

1 tháng 12 2019

Chọn B.

18 tháng 8 2020

Sửa: \(P=2x^4+x^3\left(2y-1\right)+y^3\left(2x-1\right)+2y^4\); x+y=1

Ta có \(P=2x^4+x^3\left(2y-1\right)+y^3\left(2x-1\right)+2y^4=2x^4+2x^3y-x^3+2xy^3-y^3+2y^4\)

\(=x^3\left(2x+2y\right)+y^3\left(2x+2y\right)-\left(x^3+y^3\right)=\left(2x+2y\right)\left(x^3+y^3\right)-\left(x^3+y^3\right)\)

\(=\left(2x+2y-1\right)\left(x^3+y^3\right)=x^3+y^3\)

Do \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=x^2-xy+y^2=\frac{1}{2}\left(x^2+y^2\right)\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}\right)^2\)

\(\Rightarrow P\ge\frac{1}{2}\left(x^2+y^2\right)\)

Mà \(x+y=1\Rightarrow x^2+y^2+2xy=1\Rightarrow2\left(x^2+y^2\right)-\left(x-y\right)^2=1\)

\(\Rightarrow2\left(x^2+y^2\right)\ge1\Rightarrow\left(x^2+y^2\right)\ge\frac{1}{2}\Rightarrow P\ge\frac{1}{4}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2023

Đề thiếu. Bạn viết lại đề cẩn thận, rõ ràng để mọi người hỗ trợ tốt hơn bạn nhé.

NV
19 tháng 1

Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:

\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)