K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

H(x)=\(-\frac{5}{4}x^2+\frac{5}{3}x-3\)

Áp dụng CT giải PT bậc 2 ta có: \(\Delta=b^2-4ac=\frac{25}{9}-15=-\frac{110}{9}\)

Vì đenta <0 suy ra pt vô nghiệm (DPCM)

4 tháng 1 2020

@Aki Tsuki

NV
4 tháng 1 2020

\(\left\{{}\begin{matrix}a^3-\left(a-1\right)^2=6\\\left(b+1\right)^3-b^2=6\end{matrix}\right.\) \(\Rightarrow a^3-\left(b+1\right)^3-\left[\left(a-1\right)^2-b^2\right]=0\)

Từ đoạn này trở đi chắc bạn đặt nhân tử chung được

Đặt \(R\left(x\right)=P\left(x\right)-\left(x^2+2\right)\)

\(\Rightarrow R\left(1\right)=Q\left(2\right)=Q\left(3\right)=0\)

\(\Rightarrow R\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)\)

\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)+x^2+2\)

Thay lần lượt \(x=4;x=-1\) vào \(P\left(x\right)\) và cộng lại

25 tháng 8 2019

QUÊN TOÁN 8

25 tháng 8 2019

1, TH1: x = 1 => n4 + 4 = 5 là số nguyên tố

TH2: x >= 2 => n4 \(\equiv\)1 (mod 5)

=> n4 + 4 \(⋮\)5 (ko là số nguyên tố)

23 tháng 2 2018

thôi ko cân nữa,  ghi sai đề

17 tháng 3 2019

Thấy Q(2) = 14

=> am.xm+am-1.xm-1.......a1x.a0= 14( am,am-1,...,a1,a0 thuộc N, a0 khác 0)

=> am.2m+am-1.2m-1.......a12.a0= 14

Thấy : 2m,2m-1,...,2 là số chẵn 

=> am,2m,...,a12 là số chẵn

=> a0 là số chẵn

* Nếu a lẻ

=> a + 83 chẵn

cmtt, có P(a + 83 là số chẵn )

* Nếu a chẵn

=> ....(cmtt)

=> P(a) chẵn

=> P(x) chẵn với mọi X thuộc N

=> Q(p(x)) chẵn và = 2014

:PPPPPPPPPPP

10 tháng 12 2020

Cái chỗ vế phải biểu thức nghĩa là gì thế bạn?

10 tháng 12 2020

Chắc là thế này \(3A^{n-2}_n\)

\(gt\Leftrightarrow2.n!-\left(4n+5\right)\left(n-2\right)!=3.\dfrac{n!}{2!}\)

\(\Leftrightarrow\dfrac{1}{2}n!=\left(4n+5\right)\left(n-2\right)!\Leftrightarrow\dfrac{1}{2}n\left(n-1\right)\left(n-2\right)!=\left(4n+5\right)\left(n-2\right)!\)

\(\Leftrightarrow\dfrac{1}{2}n\left(n-1\right)=4n+5\Leftrightarrow n=10\)

\(\left(3x^3-\dfrac{1}{x^2}\right)^{10}=\left(3x^3-x^{-2}\right)^{10}=\sum\limits^{10}_{k=0}C^k_{10}3^{10-k}.x^{3\left(10-k\right)}.\left(-1\right)^k.x^{-2k}\)

\(=\sum\limits^{10}_{k=0}C^k_{10}.\left(-1\right)^k.3^{10-k}.x^{30-5k}\)

=> so hang ko chua x:  \(30-5k=0\Leftrightarrow k=6\)

\(\Rightarrow C^6_{10}.\left(-1\right)^6.3^{10-6}=17010\)

16 tháng 8 2020

\(2018^{2\left(x^2-y+1\right)}=\frac{2x+y}{x^2+2x+1}\)

\(\Leftrightarrow2\left(x^2-y+1\right)=log_{2018}\left(\frac{2x+y}{x^2+2x+1}\right)\)

\(\Leftrightarrow2\left(x^2+2x+1-2x-y\right)=log_{2018}\left(2x+y\right)-log_{2018}\left(x^2+2x+1\right)\)

\(\Leftrightarrow2\left(x^2+2x+1\right)+log_{2018}\left(x^2+2x+1\right)=log_{2018}\left(2x+y\right)+2\left(2x+y\right)\)

Đặt \(f\left(u\right)=log_{2018}u+2u\)

\(\begin{matrix}x^2+2x+1>0\\2x+y>0\end{matrix}\Rightarrow u>0\)

\(f'\left(u\right)=\frac{1}{u.ln2018}+2>0\)

Suy ra hàm số đồng biến

\(\Leftrightarrow f\left(x^2+2x+1\right)=f\left(2x+y\right)\)\(\Leftrightarrow x^2+2x+1=2x+y\) (tính chất hàm đồng biến)

\(\Leftrightarrow y=x^2+1\)

\(P=2y-3x=2x^2-3x+2\)

\(P=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}\)

\(P_{min}=\frac{7}{8}\) khi \(x=\frac{3}{4}\)