Cho hình thang cân có đáy bé AB= 16cm,đáy lơn CD= 21cm, đường chéo bằng 20cm. Tính độ dài cạnh bên của hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB=CD-6=16-6=10(cm)
\(AD=\dfrac{AB}{2}=5\left(cm\right)\)
Vì ABCD là hình thang cân
nên \(AD=BC=5\left(cm\right)\)
Chu vi hình thang cân ABCD là:
\(AB+AD+CD+BC=5+5+10+16=36\left(cm\right)\)
Diện tích hình thang cân ABCD là:
\(S_{ABCD}=\dfrac{1}{2}\cdot AH\cdot\left(AB+CD\right)\)
\(=\dfrac{1}{2}\cdot4\cdot\left(10+16\right)=2\cdot26=52\left(cm^2\right)\)
Cạnh AB dài:
16 - 6 = 10 (cm)
Cạnh AD dài:
10 : 2 = 5 (cm)
Chu vi hình thang cân ABCD:
16 + 10 + 5 + 5 = 36 (cm)
Diện tích hình thang:
(16 + 10) × 4 : 2 = 52 (cm²)
Sửa đề: Đáy nhỏ bằng nửa đáy lớn và bằng độ dài hai cạnh bên
AB=CD/2=5cm
BD vuông góc BC
=>góc BDC+góc BCD=90 độ
AD=BC=AB=5cm
AB=AD
=>góc ABD=góc ADB
=>góc ADB=góc BDC
=>DB là phân giác của góc ADC
góc BDC+góc BCD=90 độ
=>1/2*góc BCD+góc BCD=90 độ
=>góc BCD=60 độ
=>góc BDC=30 độ
Xét ΔBDC vuông tại B có BD^2+BC^2=CD^2
=>BD=5*căn 3(cm)
Kẻ BH vuông góc CD
=>BH=BD*BC/CD=5/2*căn 3(cm)
Kẻ AH vuông góc với BC, BK vuông góc với CD, đường chéo AC vuông góc với AD.
Đặt AH = AB = x => AH = x
Tam giác AHD = tam giác BKC ( c.h - g.n)
=> DH = CK = (10-x)/2
Vậy HC = Hk + CK = x + (10-x)/2 = (x-10)/2
Áp dụng hệ thức lượng trong tam giác ADC vuông tại A
Có AH^2 = DH.HC => x^2 = (10-x)/2 . (x-10)/2
=> 5x^2 = 20
=> x = 2√ 5
Vậy AH = 2√5