K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2022

`1/8+1/24+1/48+1/80+1/120`

`=1/[2xx4]+1/[4xx6]+1/[6xx8]+1/[8xx10]+1/[10xx12]`

`=1/2xx(2/[2xx4]+2/[4xx6]+2/[6xx8]+2/[8xx10]+2/[10xx12])`

`=1/2xx(1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12)`

`=1/2xx(1/2-1/12)`

`=1/2xx(6/12-1/12)`

`=1/2xx5/12=5/24`

\(\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{80}+\dfrac{1}{120}\)

=\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{10.12}\)

=\(\dfrac{1}{2}.\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{10.12}\right)\)

=\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{12}\right)\)

=\(\dfrac{1}{2}.\dfrac{5}{12}\)

=\(\dfrac{5}{24}\)

Dấu chấm(.)là nhân.

Ta có: \(A=1+\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{80}+\dfrac{1}{120}\)

\(\Leftrightarrow2A=2+\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+\dfrac{2}{8\cdot10}+\dfrac{2}{10\cdot12}\)

\(\Leftrightarrow2A=2+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{12}\)

\(\Leftrightarrow2A=2+\dfrac{1}{2}-\dfrac{1}{12}\)

\(\Leftrightarrow2A=\dfrac{24}{12}+\dfrac{6}{12}-\dfrac{1}{12}\)

\(\Leftrightarrow2A=\dfrac{29}{12}\)

hay \(A=\dfrac{29}{24}\)

=\(1+\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{10\cdot12}\)

\(=1+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{10}-\dfrac{1}{12}\right)\)

\(=1+\dfrac{1}{2}\cdot\dfrac{5}{12}=1+\dfrac{5}{24}=\dfrac{29}{24}\)

21 tháng 3 2023

=1+12⋅4+14⋅6+...+110⋅121+12⋅4+14⋅6+...+110⋅12

=1+12(12−14+14−16+...+110−112)=1+12(12−14+14−16+...+110−112)

=1+12⋅512=1+524=2924

\(=\dfrac{1}{8}\left(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}\right)\)

\(=\dfrac{1}{8}\cdot2\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\right)\)

\(=\dfrac{1}{4}\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{6}-\dfrac{1}{7}\right)\)

\(=\dfrac{1}{4}\cdot\dfrac{6}{7}=\dfrac{3}{14}\)

2 tháng 11 2021

\(1,=2\sqrt{3}-3\sqrt{3}+4\sqrt{3}=3\sqrt{3}\\ 2,=\left(2\sqrt{6}+2\sqrt{5}-4\sqrt{5}\right):5=\dfrac{2\sqrt{6}}{5}-\dfrac{2\sqrt{5}}{5}\\ 3,=6\sqrt{3}-\dfrac{4\sqrt{3}}{3}-4\sqrt{3}-\dfrac{5\sqrt{3}}{3}=2\sqrt{3}-\dfrac{9\sqrt{3}}{3}=2\sqrt{3}-3\sqrt{3}=-\sqrt{3}\\ 4,Sửa:\dfrac{1}{\sqrt{5}-\sqrt{3}}-\dfrac{1}{\sqrt{5}+\sqrt{3}}\\ =\dfrac{\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\)

2 tháng 11 2021

1) \(=2\sqrt{3}-3\sqrt{3}+4\sqrt{3}=3\sqrt{3}\)

2) \(=\left(2\sqrt{6}+2\sqrt{5}-4\sqrt{5}\right)=\dfrac{2\sqrt{6}}{5}+\dfrac{2\sqrt{5}}{5}-\dfrac{4\sqrt{5}}{5}\)

3) \(=6\sqrt{3}-\dfrac{4\sqrt{3}}{3}-4\sqrt{3}-\dfrac{5\sqrt{3}}{3}=2\sqrt{3}-3\sqrt{3}=-\sqrt{3}\)

4) \(=\dfrac{\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}}{5-3}=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\)

bỏ số 1 ở đầu thì giải dc á, còn có số 1 thì chịu

11 tháng 7 2017

\(\dfrac{1}{x+2x}+\dfrac{1}{x^2+6x+8}+\dfrac{1}{x^2+10x+24}+\dfrac{1}{x^2+14x+48}=\dfrac{4}{105}\)

\(\dfrac{1}{x\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+8\right)}=\dfrac{4}{105}\)

\(\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}=\dfrac{8}{105}\)

\(\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+8}=\dfrac{8}{105}\)

\(\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{8}{105}\)

\(\dfrac{x+8-x}{x\left(x+8\right)}=\dfrac{8}{105}\)

\(\dfrac{8}{x.\left(x+8\right)}=\dfrac{8}{105}\)

\(\Rightarrow x\left(x+8\right)=105\)

\(x^2+8x-105=0\)

\(\left(x-7\right)\left(x+15\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=7\\x=-15\end{matrix}\right.\)

7 tháng 5 2021

A= 1/3+1/6+1/12+1/24+1/48+1/96

  = (1/3+1/6)+(1/12+1/24)+(1/48+1/96)

  = (2/6+1/6)+(2/24+1/24)+(2/96+1/96)

  = 1/2+1/8+1/32

  = 16/32+4/32+1/32
  = 21/32

Vậy A=21/32

Giải:

A=1/3+1/6+1/12+1/24+1/48+1/96

A=1/3+(1/2.3+1/3.4)+(1/4.6+1/6.8)+1/96

A=1/3+(1/2-1/3+1/3-1/4)+[1/2.(2/4.6+2/6.8)]+1/96

A=1/3+(1/2-1/4)+[1/2.(1/4-1/6+1/6-1/8)]+1/96

A=1/3+1/4+[1/2.(1/4-1/8)]+1/96

A=1/3+1/4+[1/2.1/8]+1/96

A=1/3+1/4+1/16+1/96

A=7/12+7/96

A=21/32

29 tháng 10 2023

a: \(\dfrac{8}{18}+\dfrac{5}{3}=\dfrac{4}{9}+\dfrac{5}{3}=\dfrac{4}{9}+\dfrac{15}{9}=\dfrac{4+15}{9}=\dfrac{19}{9}\)

b: \(\dfrac{8}{24}+\dfrac{4}{48}=\dfrac{1}{3}+\dfrac{1}{12}=\dfrac{4}{12}+\dfrac{1}{12}=\dfrac{4+1}{12}=\dfrac{5}{12}\)

c: \(\dfrac{20}{15}-\dfrac{4}{45}=\dfrac{4}{3}-\dfrac{4}{45}=\dfrac{60}{45}-\dfrac{4}{45}=\dfrac{60-4}{45}=\dfrac{56}{45}\)

d: \(\dfrac{40}{32}-\dfrac{1}{2}=\dfrac{5}{4}-\dfrac{1}{2}=\dfrac{5-2}{4}=\dfrac{3}{4}\)

17 tháng 12 2017

\(A=\dfrac{2}{x^2+2x}+\dfrac{2}{x^2+6x+8}+\dfrac{2}{x^2+10x+24}+\dfrac{2}{x^2+14x+48}\)

\(A=\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}\)

\(A=\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+8}\)

\(A=\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{x+8}{x\left(x+8\right)}-\dfrac{x}{\left(x+8\right)}=\dfrac{8}{x\left(x+8\right)}\)

\(B=\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(B=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(B=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(B=\dfrac{8}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(B=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(B=\dfrac{32}{1-x^{32}}\)

28 tháng 4 2023

\(\dfrac{1}{x^2+2x}+\dfrac{1}{x^2+6x+8}+\dfrac{1}{x^2+10x+24}+\dfrac{1}{x^2+14x+48}=\dfrac{4}{105}\)

\(\Leftrightarrow\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}=\dfrac{8}{105}\)

\(\Leftrightarrow\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)+\left(\dfrac{1}{x+2}-\dfrac{1}{x+4}\right)+\left(\dfrac{1}{x+4}-\dfrac{1}{x+6}\right)+\left(\dfrac{1}{x+6}-\dfrac{1}{x+8}\right)=\dfrac{8}{105}\)

\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{8}{105}\)

\(\Leftrightarrow\dfrac{8}{x\left(x+8\right)}=\dfrac{8}{105}\)

\(\Leftrightarrow x\left(x+8\right)=105\)

\(\Leftrightarrow x^2+8x-105=0\)

\(\Leftrightarrow x^2-7x+15x-105=0\)

\(\Leftrightarrow x\left(x-7\right)+15\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-15\end{matrix}\right.\)

Thử lại ta có nghiệm của phương trình trên là \(x=7\text{v}à\text{x}=15\)