chứng minh rằng
nếu x,y là số nguyên
mà (5x+3y) chia hết cho 29
thì (2x+7y) chia hết cho 29
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
5x+7y=11(x+y)-(6x+4y)=11(x+y)-2(3x+2y)
11(x+y) chia hết cho 11; 3x+2y chia hết cho 11 => 2(3x+2y) chia hết cho 11
=> 5x+7y chia hết cho 11
b/
5x+y=7(x+y)-(2x+6y)=7(x+y)-2(x+3y)
7(x+y) chia hết cho 7; x+3y chia hết cho 7 => 2(x+3y) chia hết cho 7
=> 5x+y chia hết cho 7
2x + y = 7 ( 2x + y ) = 14x + 7y
Do 2x + 9 chia hết cho 9 => 14x + 7y chia hết cho 9
9x chia hết cho 9 => 14x + 7y - 9x = 5x + 7y chia hết cho 9
Ta có
\(9x+9y⋮9\)
\(2x+y⋮9\Rightarrow2\left(2x+y\right)=4x+2y⋮9\)
\(\Rightarrow9x+9y-\left(4x+2y\right)=5x+7y⋮9\)
Nếu (2x+3y)chia hết cho 9 => x,y chia hết cho 9. Mà như vậy =>(5x+ 7y) chia hết cho 9
Tk cho mình nhé
a)2x+y=7(2x+y)=14x+7y
Do 2x+9 chia hết cho 9 =>14x+7y chia hết cho 9
9x chia hết cho 9 =>14x+7y-9x=5x+7y chia hết cho 9
b)p và p+2 là số nguyên tố lớn hơn 3 nên p+p+2=2p+2 chia hết cho 2
p là số nguyên tố lớn hơn 3 nên
*)P=3k(loại vì 3k là hợp số có ước là 3 và k)
*)p=3k+1(loại vì số nguyên tố lớn hơn 3 là số lẻ =>3k+1 là số chẵn)
*)p=3k+2(TM)
=>2p+2=6k+4+2=6k+6 chia hết cho 3
2p+2 chia hết cho 2 và 3=>2p+2 chia hết cho 6
=>(2p+2).1/2=p+1 chia hết cho 6
Bài 4 :
Thay x=y+5 , ta có :
a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65
=(y+5)*(y+7)+y^2-2y-2y^2-10y+65
=y^2+7y+5y+35-y^2-2y-2y^2-10y+65
= 100
Bài 5 :
A = 15x-23y
B = 2x-3y
Ta có : A-B
= ( 15x -23y)-(2x-3y)
=15x-23y-2x-3y
=13x-26y
=13x*(x-2y) chia hết cho 13
=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại