Rút gọn biểu thức sau:
A = \(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\) . \(\left(\sqrt{x}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=3-1=2\)
b: \(=\dfrac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{2}{\sqrt{x}+1}=\dfrac{-4}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}\)
a, \(=\left(\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+1\right)\left(\sqrt{3}-1\right)=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)
b, với x > 0
\(=\left(\dfrac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\left(\dfrac{2}{\sqrt{x+1}}\right)\)
\(=-\dfrac{-4}{\sqrt{x}\left(\sqrt{x}+2\right)\sqrt{x+1}}=\dfrac{4}{\left(\sqrt{x}+2\right)\sqrt{x^2+x}}\)
\(a,A=\dfrac{1}{2-\sqrt{3}}+\dfrac{1}{2+\sqrt{3}}\)
\(=\dfrac{2+\sqrt{3}+2-\sqrt{3}}{2^2-\sqrt{3}^2}\)
\(=\dfrac{4}{1}=4\)
Vậy \(A=4\)
\(b,B=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}-1}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\left(\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
Vậy \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}\) với \(x>0,x\ne1\)
a: \(=2+\sqrt{3}+2-\sqrt{3}=4\)
b: \(=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
a) \(\sqrt{36\left(x-5\right)^2}\left(x\ge5\right)=6\left|x-5\right|=6\left(x-5\right)=6x-30\)
b) \(\sqrt{\dfrac{1}{4}\left(1-x\right)^2}\left(x>1\right)=\dfrac{1}{2}\left|1-x\right|=\dfrac{1}{2}\left(x-1\right)=\dfrac{1}{2}x-\dfrac{1}{2}\)
c) \(\sqrt{x^2\left(2x-4\right)^2}\left(x\ge2\right)=\left|x\left(2x-4\right)\right|=x\left(2x-4\right)=2x^2-4x\)
d) \(\dfrac{1}{x}\sqrt{x^2\left(1+x\right)^2}\left(x< -1\right)=\dfrac{1}{x}\left|x\left(1+x\right)\right|=\dfrac{1}{x}x\left(1+x\right)=1+x\)
a: \(\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)-\sqrt{x^3}\)
\(=1-x\sqrt{x}-x\sqrt{x}\)
\(=1-2x\sqrt{x}\)
b: \(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\cdot\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\)
\(=\left(\dfrac{\left(1-\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\left(\dfrac{\left(1-\sqrt{a}\right)\cdot\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right)\)
\(=\left(\dfrac{1}{\sqrt{a}+1}\right)^2\cdot\left(a+\sqrt{a}+1+\sqrt{a}\right)\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)
a) \(\sqrt{36\left(x-5\right)^2}=6\left|x-5\right|\)
\(=6\left(x-5\right)\) (khi \(x\ge5\))
hoặc \(=6\left(5-x\right)\) (khi \(x< 5\))
b) \(\sqrt{\dfrac{1}{4}\left(1-x\right)^2}=\dfrac{1}{2}\left|1-x\right|\)
\(=\dfrac{1}{2}\left(1-x\right)\) (khi \(x\le1\))
hoặc \(=\dfrac{1}{2}\left(x-1\right)\) (khi \(x>1\))
c) \(\sqrt{x^2\left(2x-4\right)^2}=\left|x\right|\left|2x-4\right|\)
\(=x\left(2x-4\right)\) (khi \(x\ge2\))
hoặc \(=x\left(4-2x\right)\) (khi \(0\le x< 2\))
hoặc \(=-x\left(4-2x\right)\) (khi \(x< 0\))
Câu 1:
Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)
Câu 3:
Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)
\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)
\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)
\(=\sqrt{a}\left(\sqrt{a}-2\right)\)
\(=a-2\sqrt{a}\)
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\dfrac{x\sqrt{x}+y\sqrt{y}-\left(x-y\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\dfrac{x\sqrt{x}+y\sqrt{y}-x\sqrt{x}+x\sqrt{y}+y\sqrt{x}-y\sqrt{y}}{\sqrt{x}+\sqrt{y}}=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\left|\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right|=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)( do \(x\ge1\))
a: Ta có: \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
\(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)
\(=\sqrt{xy}\)
b: Ta có: \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)
\(=\dfrac{ \left|\sqrt{x}-1\right|}{\left|\sqrt{x}+1\right|}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right).\left(\sqrt{x}-1\right)\);\(ĐK:x\ge0;x\ne1\)
\(A=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)\)
\(A=\left(\dfrac{x-\sqrt{x}+2\sqrt{x}-2-2\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)\)
\(A=\left(\dfrac{-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)\)
\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)
\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right).\left(\sqrt{x-1}\right)\left(đk:x\ne1\right)\\ A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right).\left(\sqrt{x}-1\right)\\ A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-2\right).\left(\sqrt{x}-1\right)\)
\(A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right).\left(\sqrt{x}-1\right)\\ A=\left(\dfrac{\sqrt{x}+2-2\sqrt{x}-2}{\sqrt{x}+1}\right).\left(\sqrt{x}-1\right)\\ A=\dfrac{-\sqrt{x}}{\sqrt{x}+1}.\left(\sqrt{x}-1\right)\\ A=\dfrac{-x+\sqrt{x}}{\sqrt{x}+1}\)