Chứng minh rằng với mọi \(n\inℤ^+\), ta có \(\dfrac{1}{2}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét số hạng tổng quát:
\(\frac{1}{(n+1)\sqrt{n}}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{(n+1)\sqrt{n}}<\frac{(\sqrt{n+1}-\sqrt{n}).2\sqrt{n+1}}{(n+1)\sqrt{n}}\)
Hay \(\frac{1}{(n+1)\sqrt{n}}< \frac{2\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)
Áp dụng vào bài toán:
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{(n+1)\sqrt{n}}< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+\frac{2}{\sqrt{3}}-\frac{2}{\sqrt{4}}+....+\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}=2-\frac{2}{\sqrt{n+1}}< 2\)
Ta có đpcm.
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Do đó:
\(VT=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
\(VT=1-\dfrac{1}{\sqrt{n+1}}< 1\) (đpcm)
Lời giải:
Với 2 số $a,b$ dương, ta luôn có BĐT quen thuộc sau:
\(a^3+b^3\geq ab(a+b)\)
Cách chứng minh rất đơn giản, biến đổi tương đương ta có:
\(a^3+b^3-ab(a+b)\geq 0\)
\(\Leftrightarrow a^2(a-b)-b^2(a-b)\geq 0\Leftrightarrow (a-b)^2(a+b)\geq 0\) (luôn đúng với mọi $a,b>0$)
---------------------------------------
Áp dụng vào bài toán:
\((n+1)\sqrt{n+1}+n\sqrt{n}=(\sqrt{n})^3+(\sqrt{n+1})^3\geq \sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})\)
\(\Rightarrow \frac{1}{(n+1)\sqrt{n+1}+n\sqrt{n}}< \frac{1}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Do đó:
\(\frac{1}{2\sqrt{2}+1}< 1-\frac{1}{\sqrt{2}}\)
\(\frac{1}{3\sqrt{3}+2\sqrt{2}}< \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
......
\(\frac{1}{(n+1)\sqrt{n+1}+n\sqrt{n}}< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Cộng theo vế:
\(\Rightarrow \text{VT}< 1-\frac{1}{\sqrt{n+1}}\)
Ta có đpcm.
Lời giải:
Đặt \(P=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{n}}\)
Ta có:
\(\frac{P}{2}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{4}}+...+\frac{1}{2\sqrt{n}}\)
\(< \frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{n-1}+\sqrt{n}}(1)\)
Mà:
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{(\sqrt{2}-\sqrt{1})(\sqrt{2}+\sqrt{1})}{\sqrt{1}+\sqrt{2}}+\frac{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}{\sqrt{2}+\sqrt{3}}+\frac{(\sqrt{4}-\sqrt{3})(\sqrt{4}+\sqrt{3})}{\sqrt{3}+\sqrt{4}}+....+\frac{(\sqrt{n}-\sqrt{n-1})(\sqrt{n}+\sqrt{n-1})}{\sqrt{n-1}+\sqrt{n}}\)
\(=(\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})+...+(\sqrt{n}-\sqrt{n-1})\)
\(=\sqrt{n}-1(2)\)
Từ \((1);(2)\Rightarrow \frac{P}{2}< \sqrt{n}-1\Rightarrow P< 2\sqrt{n}-2\)
-----------------------
Tương tự:
\(\frac{P}{2}>\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}+\frac{1}{2\sqrt{n}}=\sqrt{n}-\sqrt{2}+\frac{1}{2\sqrt{n}}\)
\(\Rightarrow P> 2\sqrt{n}-2\sqrt{2}+\frac{1}{\sqrt{n}}\)
Mà \(2\sqrt{n}-2\sqrt{2}+\frac{1}{\sqrt{n}}> 2\sqrt{n}-3\Rightarrow P>2\sqrt{n}-3\)
Ta có đpcm.
2/ \(\sqrt{4+\sqrt{4+...+\sqrt{4}}}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{7+\sqrt{4}}}}}=3\)
1/ Ta có:
\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=\sqrt{\left(\dfrac{n^2+n+1}{n\left(n+1\right)}\right)^2}=\dfrac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow C=99+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=100-\dfrac{1}{100}=\dfrac{9999}{100}\)
Ta có: \(\dfrac{1}{\left(k+1\right)\sqrt{k}}=\dfrac{\sqrt{k}}{k\left(k+1\right)}=\dfrac{\sqrt{k}}{k}-\dfrac{\sqrt{k}}{k+1}=\sqrt{k}\left(\dfrac{1}{\sqrt{k}}+\dfrac{1}{\sqrt{k+1}}\right)\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\)
\(=\left(1+\dfrac{\sqrt{k}}{\sqrt{k+1}}\right)\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)< 2\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\)
Suy ra\(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
\(=2\left(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{n+1}}\right)< 2\)