Phần nguyên của một số thập phân là số có 3 chữ số hàng chục gấp 2 lần đơn vị . Lấy tích của chữ số hàng chục và chữ số hàng đơn vị chia cho tổng của chúng ta được chữ số hàng trăm . Tìm số thập phân đó biết rằng khi viết các chữ số của số thập phân đó theo thứ tự ngược lại thì số đó không thay đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giá trị 3 số hàng trăm, chục, đơn vị là \(a,b,c\)
Khi đó: \(a=2\cdot b\)
\(c=\left(a\cdot b\right):\left(a+b\right)\)
\(c=\left(2\cdot b\cdot b\right):\left(a+b\right)\)
\(c=\dfrac{2\cdot b\cdot b}{2\cdot b+b}=\dfrac{2\cdot b\cdot b}{b\left(2+1\right)}=\dfrac{2\cdot b}{3}\)
Mà c là một số nên \(2\cdot b⋮3\) hay \(b⋮3\)
Để số hàng trăm gấp đôi số hàng chục thì:
\(a=2;b=1\)
\(a=4;b=2\)
\(a=6;b=3\)
\(a=8;b=4\)
Mà để \(b⋮3\) thì chỉ có trường hợp \(a=6;b=3\) thỏa mãn.
Vậy lúc đó \(c=6\cdot3:\left(6+3\right)=18:9=2\)
Số đó là: \(632\)
Gọi số hàng trăm, chục, đơn vị là a,b,c cho số có dạng \(\overline{abc}\)
Theo bài toán, ta có:
\(a=2\cdot b\) (hàng trăm gấp đôi hàng chục)
\(\left(a\cdot b\right):\left(a+b\right)=c\) (tích hàng trăm và chục chia cho tổng của chúng là ra giá trị hàng đơn vị)
Khi đó \(\left(2\cdot b\cdot b\right):\left(2\cdot b+b\right)=c\)
\(\dfrac{2\cdot b\cdot b}{b\left(2+1\right)}=\dfrac{2\cdot b}{3}=c\)
Mà c là một số nên \(2\cdot b⋮3\)
Mà \(2\cdot b\) là số hàng trăm nên \(2\cdot b>1\), vậy chỉ có \(b=3\) thỏa mãn.
Vậy số hàng trăm là: \(2\cdot3=6\)
Số hàng chục là \(3\)
Số hàng đơn vị là:
\(\left(3\cdot6\right):\left(3+6\right)=2\)
Vậy số cần tìm là \(632\)
Số có ba chữ số có dạng: \(\overline{abc}\) theo bài ra ta có:
a = 2 \(\times\) b nên a + b = 2\(\times\) b + b = 3 x b và a x b = 2 x b x b
suy ra: a x b : (a + b) = \(\dfrac{2\times b\times b}{3\times b}\) = c = \(\dfrac{2}{3}\) x b vậy b = 3; 6; 9
Lập bảng ta có
b | 3 | 6 | 9 |
c = \(\dfrac{2}{3}\) x b | 2 | 4 | 6 |
a = b x 2 | 6 | 12 (loại) | 18 (loại) |
\(\overline{abc}\) | 632 |
Theo bảng trên ta có: số thỏa mãn đề bài là: 632